
Collaborative and Content-based Filtering for Item
Recommendation on Social Bookmarking Websites

Toine Bogers
ILK / Tilburg centre for Creative Computing

Tilburg University
P.O. Box 90153, 5000 LE
Tilburg, The Netherlands
A.M.Bogers@uvt.nl

Antal van den Bosch
ILK / Tilburg centre for Creative Computing

Tilburg University
P.O. Box 90153, 5000 LE
Tilburg, The Netherlands

Antal.vdnBosch@uvt.nl

ABSTRACT
Social bookmarking websites allow users to store, organize, and
search bookmarks of web pages. Users of these services can an-
notate their bookmarks by using informal tags and other metadata,
such as titles, descriptions, etc. In this paper, we focus on the task
of item recommendation for social bookmarking websites, i.e. pre-
dicting which unseen bookmarks a user might like based on his or
her profile. We examine how we can incorporate the tags and other
metadata into a nearest-neighbor collaborative filtering (CF) algo-
rithm, by replacing the traditional usage-based similarity metrics
by tag overlap, and by fusing tag-based similarity with usage-based
similarity. In addition, we perform experiments with content-based
filtering by using the metadata content to recommend interesting
items. We generate recommendations directly based on Kullback-
Leibler divergence of the metadata language models, and we ex-
plore the use of this metadata in calculating user and item simi-
larities. We perform our experiments on three data sets from two
different domains: Delicious, CiteULike and BibSonomy.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: H.3.1 Content Anal-
ysis and Indexing; H.3.3 Information Search and Retrieval; H.3.4
Systems and Software

General Terms
Algorithms, Measurement, Performance, Experimentation

Keywords
Recommender systems, social bookmarking, folksonomies, collab-
orative filtering, content-based filtering

1. INTRODUCTION
Recommender systems belong to a class of personalized infor-

mation filtering technologies that aim to identify which items in
a catalog might be of interest to a particular user. Recommenda-
tions can be made using a variety of information sources related to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM RecSys ’09 Workshop on Recommender Systems and the Social Web
October 25, 2009, New York, NY, USA.
Copyright 2009 by the author(s).

both the user and the items: past user preferences, purchase his-
tory, demographic information, item popularity, the metadata char-
acteristics of the products, etc. Social bookmarking websites, with
their emphasis on open collaborative information access, offer an
ideal scenario for the application of recommender systems technol-
ogy. They allow users to manage their favorite bookmarks online
through a web interface and, in many cases, allow their users to
tag the content they added to the system with keywords. The ag-
gregation of these tags, the folksonomy, is an extra annotation layer
connecting users and items. The underlying application then makes
all information sharable among users. The success of such websites
partly depends on how the connections between users, items, and
tags are exploited.

Social bookmarking websites also offer possibilities for attach-
ing item-specific metadata to each item, such as the item’s title or
summary. This additional metadata could also be used to support
the recommendation process. Using item metadata to boost perfor-
mance is not new in recommender systems research, but typically
such content-related information is attached to the items, and is
therefore the same across all users [23]. On the other hand, the tags
assigned to items are specific to the user who added them. We know
of no approaches to item recommendation for social bookmarking
that investigate the use of such metadata.

In this paper we focus on the question how we can make use
the information represented by the folksonomy and the item meta-
data to boost the performance of traditional collaborative filtering
algorithms. We make the following contributions. First, we exam-
ine different ways of extending the standard nearest-neighbor algo-
rithm with information about tagging behavior. Second, we explore
how best to use the metadata for recommendation by proposing
four different algorithms. Finally, we perform our experiments on
publicly available data sets with standardized evaluation metrics to
promote verifiability. The remainder of this paper is structured as
follows. We start by introducing our data sets and experimental
setup in the next section. In Section 3 we describe and compare
different CF algorithms that operate on the folksonomy to gener-
ate recommendations. Section 4 we describe how we exploit the
metadata in our data sets to generate item recommendations. We
describe the related work in Section 5 and conclude in Section 6.

2. METHODOLOGY

2.1 Data Sets
We base our experiments on four data sets that were collected

from three different social bookmarking websites with different char-
acteristics: CiteULike, BibSonomy, and Delicious. Two data sets
correspond to the domain of Web page bookmarks (Delicious and

BibSonomy) and the other two cover the domain of scientific arti-
cles (Delicious and BibSonomy).

CiteULike is a social bookmarking service that allows its users to
add their academic reference library to an online profile1. Articles
can be stored with their metadata, abstracts, and links to the papers
at the publishers’ sites. Users can also add personal comments and
tags. CiteULike offers daily dumps of their core database. We used
the dump of November 2, 2007 as the basis for our experiments.
A dump contains all information on which articles were posted by
whom, with which tags, and at what point in time. It does not, how-
ever, contain any other item metadata, so we crawled this ourselves
from the CiteULike website using the article IDs. Articles are an-
notated using the standard BibTeX-like fields, such as title, author
names, page numbers, publisher information, etc.

BibSonomy is a social bookmarking service for sharing Web
page bookmarks and reference lists of scientific articles2. Items
are stored and represented by their BibTeX metadata representa-
tions. These can include abstracts and links to the papers at the pub-
lishers’ websites. Users are able to tag their bookmarked content
and use these tags to browse and discover related references [13].
BibSonomy’s creators organized the 2008 ECML/PKDD Discov-
ery Challenge which focused on social bookmarking, and released
the BibSonomy data set to the public in May 2008 as part of this
challenge3. The organizers made a snapshot of the BibSonomy
system consisting of all resources posted to BibSonomy between
its inception in 2006 and March 31, 2008. It includes the same
type of article metadata as we collected for CiteULike. The dis-
tinction between bookmarks and BibTeX records is also made in
this snapshot. We therefore split this data dump into a data set con-
taining only web bookmarks (Bibsonomy Bookmarks), and a data
set containing only scientific articles (Bibsonomy Articles).

Delicious is a social bookmarking service for storing, sharing,
and discovering web bookmarks. It allows its users to manage
and tag URLs of web pages4. Unlike CiteULike and BibSonomy,
Delicious does not offer data dumps of their databases, so we gath-
ered our data set by crawling a subset of the Delicious website. Be-
cause of our focus on the task of item recommendation for users,
our aim was to collect a balanced, unbiased set of user profiles,
i.e. the complete set of bookmarks a user had posted to Delicious.
From an earlier breadth-first crawl of Delicious we obtained a list
of 300,000 users. We randomly selected around 18,000 of these
users to match the size of our CiteULike data set, and crawled their
entire profiles.

2.1.1 Data set filtering
It is common practice in recommender system evaluation to se-

lect realistic subsets of the data sets used to ensure that reliable
recommendations can be generated. This also allows for a fair
comparisons of different recommendation algorithms [11]. This
is typically done by filtering out users or items whose profile size
or popularity falls below a certain threshold. We follow this proce-
dure in our preparation of the data sets as well. We only retain the
users who have added 20 items or more to their personal profile. In
addition, we filter out all items that occur only once, as well as all
untagged posts. We were able to identify and filter out most of the
spam content in the CiteULike and BibSonomy data sets. We refer
the reader to [5] for more details about this process. Table 1 lists
the statistics of our four data sets after filtering.

1http://www.citeulike.org/
2http://www.bibsonomy.org/
3http://www.kde.cs.uni-kassel.de/ws/rsdc08/
4http://www.delicious.com/

2.2 Experimental Setup & Evaluation
In order to evaluate and compare different recommender algo-

rithms, we need a proper framework for experimentation and evalu-
ation. Recommender systems evaluation—and the differences with
IR evaluation—has been addressed by, among others, [11]. We
evaluate the “Find Good Items” task, also known as Top-N rec-
ommendation, where users are provided with a ranked list of rec-
ommended items based on their personal profile. We divide each
data set into a training and test set by randomly selecting 10% of
the users to be in our test set. Final performance is evaluated on
this 10% by withholding 10 items from each of these so-called ac-
tive users, and using the remaining profile items together with the
training set to generate the recommendations for those 10%. If the
withheld items are predicted at the top of the ranked result list, then
the algorithm is considered to do perform well. To prevent over-
estimation when optimizing algorithm parameters, we use 10-fold
cross-validation. We subdivide our training set into 10 folds and
use these for 10-fold cross-validation of our parameter optimiza-
tion. For each fold, 10 items are withheld from the test fold users
to be retrieved by the recommendation algorithm. The final values
for our evaluation metric on the withheld items are then macro-
averaged over the 10 folds.

In our evaluation, we adopt an IR perspective by treating each of
the users as a separate query or topic. The 10 withheld items for
each user constitute the items for which we have relevance judg-
ments. Herlocker et al. [11] assess the usefulness of different met-
rics for different types of recommendation tasks. For the Top-N
recommendation task, they find that metrics that take into account
the ranking of the items are most appropriate. We therefore evalu-
ate our algorithms using Mean Average Precision (MAP), which is
defined as the average of the Average Precision values calculated
over each relevant retrieved item. For determining significance of
differences between runs, we use a two-tailed paired Student’s t-
test. We report on significant differences against the best baseline
runs using M (and O) for α = .05 and N (and H) for α = .01.

3. FOLKSONOMIC RECOMMENDATION
We start by establishing some notation and definitions of the task

at hand, based in part on notation by [9]. In the social bookmarking
setting, users post items to their personal profiles and can choose
to label them with one or more tags. We define a folksonomy to be
the tripartite graph that emerges from this collaborative annotation
of items. The resulting ternary relations that make up the tripar-
tite graph can be represented as a 3D matrix of users, items, and
tags. Figure 1 illustrates this view. We refer to the 3D matrix as
D(uk, il, tm). Here, each element d(k, l,m) of this matrix indicates
if user uk (with k = {1, . . . ,K}) tagged item il (with l = {1, . . . , L})
with tag tm (with m = {1, . . . ,M}), where a value of 1 indicates the
ternary relation is present in the folksonomy.

In conventional recommender systems, the user-item matrix con-
tains ratings information. These ratings can be explicit, when they
are entered directly by the user, or implicit, when they are inferred
from user behavior. In our case we have implicit, unary ratings
where all items that were added by a user receive a rating of 1.
We extract this ratings matrix R(uk, il) for all user-item pairs di-
rectly from the tripartite graph. We denote its individual elements
by xk,l = {1, ∅}. Each user is represented in this matrix as its user
profile row vector uk, which lists the items that user added to his or
her profile. Items are represented by the column vectors of R which
represent the item profile vectors il that contain all users that have
added that item. As shown in Figure 1, we can also extract a user-
item matrix from D by aggregating over the tag dimension. We then

http://www.citeulike.org/
http://www.bibsonomy.org/
http://www.kde.cs.uni-kassel.de/ws/rsdc08/
http://www.delicious.com/

Table 1: Statistics of the filtered versions of our four data sets.
bookmarks articles

Delicious BibSonomy CiteULike BibSonomy
users 1,243 192 1,322 167
items 152,698 11,165 38,419 12,982
tags 42,820 13,233 28,312 5,165
posts 238,070 29,096 84,637 29,720
user-item sparsity 99.8746 98.6427 99.8334 98.6291
avg # items per user 191.5 151.5 64.0 178.0
avg # users per item 1.6 2.6 2.2 2.3
avg # tags per user 192.1 203.3 57.3 79.2
avg # users per tag 5.6 2.9 2.7 2.6
avg # tags per item 4.8 8.4 5.3 3.1
avg # items per tag 17.0 7.1 7.3 7.7

UI

D

R

items

items

users

users

tags

Σ

u 1

u K

i 1 i L itemsi 1 i L

users

u 1

u K

binarize

Figure 1: Representing the folksonomy graph as a 3D matrix.
The ratings matrix R is derived from the tripartite graph it-
self, and directly represents what items were added by which
users. Aggregation over the tag dimension of D gives us matrix
UI, containing the tag counts for each user-item pair. We can
obtain R by binarizing the values in UI..

obtain the K × L user-item matrix UI(uk, il) =
∑M

m=1 D(uk, il, tm),
specifying how many tags each user assigned to each item. Be-
cause we filtered our data sets to include only tagged content, our
ratings matrix R is the same as a binary version of UI. Similar to
the way we defined UI we can also aggregate the content of D over
the user and the item dimensions. We define the K×M user-tag ma-
trix UT(uk, tm) =

∑L
l=1 D(uk, il, tm), specifying how often each user

used certain tag to annotate his or her items. Individual elements
of UT are denoted by yk,m. We define the L × M item-tag matrix
IT(il, tm) =

∑K
k=1 D(uk, il, tm), indicating how many users assigned

a certain tag to an item. Individual elements of IT are denoted by
zl,m. We also define binary versions of UT and IT as UTbinary and
ITbinary. The row vectors of the UT and IT matrices represent the
user tag profiles dk and item tag profiles fl respectively. They list
what tags have been assigned by a user to his items, or to an item
by its users. Formally, the goal of each of the recommendation al-
gorithms discussed in this paper is to produce a ranking of all items
l that are not yet in the profile of the active user uk (i.e., xk,l = ∅).
To this end, we predict a score x̂k,l for each item that represents the
likelihood of that item being relevant for the active user. The final
recommendations for a user are generated by ranking all items il by
their predicted score x̂k,l.

3.1 Baseline Recommendation Algorithms
A common and well-understood source of information for rec-

ommendation is usage patterns of adding and rating items. The
class of algorithms that exploit such patterns for recommendation
purposes are called Collaborative Filtering algorithms (CF). In this
paper we focus on using and extending the k-Nearest Neighbor (k-
NN) algorithm. We pick the k-NN algorithm because it is a well
understood algorithm that can intuitively be extended to include
other information in addition to transaction patterns [7, 10]. There
are two flavors of the k-NN algorithm for CF: user-based filtering
and item-based filtering. In user-based filtering, we locate the users
most similar to the active users, and look among their items for new
recommendations. In item-based filtering, we locate the most simi-
lar items for each of the active user’s items and aggregate these into
a list of predicted items.

User-based Filtering.
In the first step of user-based filtering we calculate the similari-

ties between pairs of users to identify the most similar users for an
active user. Many different similarity metrics have been proposed
and evaluated over time, such as Pearson’s correlation coefficient
and cosine similarity [6]. We use the cosine similarity in our ex-
periments as it has often been used successfully on data sets with
implicit ratings [6, 19]. We calculate the cosine similarity between
the active user uk and another user ua on the user profile vectors uk

and ua as simcosine(uk, ua) =
uk ·ua
||uk || ||ua ||

.
The next step in user-based filtering is to determine the top N

similar users (or items) for user uk. We denote this set as the
Set of Similar Users SSU(uk), which are the top N users of the
set of all users ua, ranked by their cosine similarity. For each
user ua, we only consider those items that ua added to his pro-
file (xa,l , ∅). Using this set of nearest neighbors we generate
the final prediction scores x̂k,l for each unseen item il as x̂k,l =∑

ua∈SSU(uk) simcosine(uk, ua). Here, the predicted score of an item
il is the sum of the similarity values (between 0 and 1) of all N
nearest neighbors that actually added item il (i.e. xa,l , ∅).

A recurring observation from the literature about CF algorithms
is that universally liked items are not as useful for capturing the
similarity between users as less common items, see e.g. [6]. We
therefore perform two runs: the ‘vanilla’ base run described above
(u-bin-sim) and a run where the values in the user vectors are weighted
by the inverse user frequencies of the items (u-bin-idf-sim).

Item-based Filtering.
The item-based k-NN algorithm operates analogously to the user-

based filtering algorithm [19]. Instead of comparing users directly,

Table 2: Results of the folksonomic recommendation runs. Reported are the MAP scores as well as the optimal number of neighbors
N. Best-performing runs for each data group of approaches are printed in bold. Best-performing tag overlap runs for both user-
based and item-based are printed in bold. The percentage difference between the best baseline CF runs and the best tag overlap runs
are indicated after each type.

Runs
bookmarks articles

BibSonomy Delicious BibSonomy CiteULike
MAP N MAP N MAP N MAP N

Best baseline UB CF run 0.0277H 13 0.0046H 15 0.0865H 4 0.0757H 15
(u-bin-idf-sim) (u-bin-sim) (u-bin-sim) (u-bin-idf-sim)

ut-jaccard-sim 0.0070H 8 0.0015H 11 0.0459H 6 0.0449H 5
ut-dice-sim 0.0069O 6 0.0007H 6 0.0333O 4 0.0439H 2
ut-bin-sim 0.0102H 5 0.0017H 11 0.0332O 4 0.0452H 3
ut-tf-sim 0.0069O 2 0.0015O 25 0.0368H 4 0.0428H 8
ut-tfidf-sim 0.0018O 6 0.0013O 17 0.0169H 2 0.0400H 2
% Change over best UB CF run -63.2% -63.0% -46.9% -40.7%

Best baseline IB CF run 0.0244H 34 0.0027H 25 0.0737H 49 0.0887H 30
(i-bin-idf-sim) (i-bin-sim) (i-bin-idf-sim) (i-bin-idf-sim)

it-jaccard-sim 0.0370H 3 0.0083M 21 0.0909H 6 0.0810H 14
it-dice-sim 0.0317H 2 0.0089M 25 0.0963H 8 0.0814H 8
it-bin-sim 0.0334H 2 0.0101M 23 0.0868H 5 0.0779H 10
it-tf-sim 0.0324H 4 0.0100M 11 0.0823H 4 0.0607H 17
it-tfidf-sim 0.0287H 8 0.0058H 7 0.1100H 7 0.0789H 21
% Change over best IB CF run +51.6% +274.1% +49.3% -8.2%
% Change over best CF run +33.6% +119.6% +27.2% -8.2%

we try to identify the best recommendations for each of the items
in an active user’s profile. In other words, for item-based filter-
ing we calculate the similarities between the test items of the ac-
tive user uk and the other items that user has not yet added (so
xk,l = ∅). Similarity between two items il and ib is calculated on the
item profile vectors il and ib as simcosine(il, ib) =

il ·ib
||il || ||ib ||

. Next, we
identify the top N most similar items for each of the active user’s
items il separately. We define this neighborhood as the Set of Sim-
ilar Items SSI(il), where we select the top N of all items not al-
ready in the active user’s profile, ranked on their cosine similarity
simcosine(il, ib) to item il. Using this set of nearest neighbors we
generate the final prediction score x̂k,l for each unseen item il as
x̂k,l =

∑
ib∈SSI(il) simcosine(il, ib). Here, the predicted score is the sum

of the similarity values (between 0 and 1) of all the most similar
items that were added by user uk (i.e. xk,b , ∅). Analogous to
user-based filtering, we can also suppress the influence of the most
‘popular’ users, i.e. users that have added a disproportionately large
number of items to their profile, such as bots or spam users. We re-
fer to the item-based filtering runs weighted with the inverse item
frequency as i-bin-idf-sim and to the unweighted runs as i-bin-sim.

3.2 Tag Overlap Similarity
The folksonomies present in our four data sets each constitute an

extra layer of connections between user and items. We exploit this
extra layer for determining another type of similarity between users
or items. For instance, users that assign many of the same tags can
be seen as similar, and items that are often assigned the same tags
can also be seen as similar.

We restrict ourselves to comparing three common similarity met-
rics: Jaccard overlap, Dice’s coefficient, and the cosine similarity.
We use these similarities as the basis for item recommendation.
The only difference between this approach and the standard CF al-
gorithm is in the first step, where the similarities are calculated.
For user-based filtering, we calculate tag overlap on the UT ma-
trix or on the binarized version UTbinary, depending on the metric.
Both the Jaccard overlap and Dice’s coefficient are set-based met-

rics, which means we calculate them on the binary vectors from the
UTbinary matrix. The Jaccard Overlap simJaccard(dk, da) between two
users dk and da is defined as |dk∩da |

|dk∪da |
. Dice’s coefficient simDice(dk, da)

is defined as 2|dk∩da |

|dk |+|da |
. We refer to the user-based runs with the Jac-

card overlap and Dice’s coefficient as ut-jaccard-sim and ut-dice-
sim respectively. The cosine similarity is calculated in three dif-
ferent ways. First, we calculate it on the regular tag count vectors
dk and da from UT as ut-tf-sim, and on the binary vectors from the
UTbinary matrix as ut-bin-sim. In addition, we also experiment with
idf-weighting of the tags in the user tag count vectors as we did be-
fore. We refer to this run as ut-tfidf-sim. The item-based versions
of these similarity metrics are calculated on the IT and ITbinary ma-
trices. We refer to these five item-based runs as it-jaccard-sim,
it-dice-sim, it-bin-sim, it-tf-sim, and it-tfidf-sim.

3.3 Results & Discussion
Table 2 compares the results of our baseline CF runs that em-

ploy usage-based similarities to the runs that use overlap in tag-
ging behavior as a source of user and item similarity. We see that
the user-based filtering baseline outperforms item-based filtering
on three of four data sets; only on CiteULike does item-based filter-
ing work better, where this difference is also statistically significant
(p < 0.05). The other differences between user-based and item-
based filtering are not significant. There appears to be no clear or
statistically significant advantage to applying idf-weighting to the
profile vectors. An explanation for the advantage of user-based fil-
tering is that, according to Table 1, the average number of items per
user is much higher than the average number of users per item. Cal-
culating a meaningful overlap between user profile vectors could
therefore be more robust than between item profile vectors.

As for the results with tag overlap, we observe that item simi-
larities based on tag overlap work well for item-based filtering, as
three of our four data sets show considerable improvements over
the best CF baseline runs. Performance increases range from 27%
on Bibsonomy Articles to almost 120% on Delicious, but these
are only statistically significant on the Delicious data set. We see

the opposite trend for user-based filtering, where tag overlap re-
sults in significantly worse scores for almost all variants on all data
sets, with performance decreases ranging from 40% to 63%. This
means that using tag overlap in item-based filtering makes item-
based filtering outperform user-based filtering on all four data sets.
We believe that it is the reduction in sparsity from using tag overlap
that causes this difference in performance. On average, the number
of tags assigned to an item is 2.5 times higher than the number of
users who have added the item. This means that, on average, item
profile vectors from the IT matrix are less sparse than item pro-
file vectors from the UI matrix, making the possibility of overlap
between vectors more likely. Using more values in the similarity
calculation leads to a better estimate of the real similarity between
two items.

For user-based filtering this difference is not as well-pronounced:
in some data sets users have more items than tags on average, and
more tags than items in other data sets. This explains why we do
not see the same performance increase for the user-based filtering
runs based on tag overlap. The results of the different tag overlap
metrics tend to be close together and differences between them are
not statistically significant. Even though the best-performing simi-
larity metrics are dependent on the data set, we do see that the met-
rics operating on the binary vectors from the UTbinary and ITbinary

matrices are consistently among the top performers.
In general, it appears that bookmark recommendation is more

difficult than article recommendation. We believe this is due to a
difference in topic specificity. The Delicious and Bibsonomy Book-
marks data sets cover bookmarks of web pages, which encompass
many more topics than scientific articles do. Users of Delicious
and Bibsonomy Bookmarks can be expected to have more differ-
ent topics in their profile, making it more difficult to recommend
new, interesting bookmarks based on their profiles. We see evi-
dence for this explanation in the average number of unique tags per
user: 203.3 and 192.1 for Bibsonomy Bookmarks and Delicious
respectively, which is markedly higher than the 79.2 and 57.3 for
Bibsonomy Articles and CiteULike.

4. RECOMMENDATION USING METADATA
In addition to the folksonomic structure of the underlying net-

work, social bookmarking services also offer users the possibility
to annotate the content of their items with metadata. In this section
we investigate the role such metadata can play in recommending
interesting bookmarks or references. We propose two different ap-
proaches: content-based filtering and hybrid filtering. Before we
move on to describing these in Sections 4.1 and 4.2, we first take a
closer look at the metadata we have available.

In our approach we distinguish between item-intrinsic and item-
extrinsic metadata. Item-intrinsic metadata fields relate directly to
the content of the item being annotated. For the two data sets deal-
ing with web bookmarks these include DESCRIPTION, TAGS, TITLE,
and URL. The two scientific article data sets contain the additional
intrinsic fields ABSTRACT ,AUTHOR, BOOKTITLE, EDITOR, JOURNAL, NOTE,
and SERIES. The intuition behind assigning metadata fields to the
item-intrinsic category is that these fields can be used as stand-
alone sources for recommending other content. For instance, given
a certain paper from a user’s profile, papers with similar abstracts,
papers written by the same author, or papers published at the same
workshop are likely to be relevant recommendations. In contrast,
item-extrinsic metadata fields—such as MONTH or PAGES—cannot be
used to directly generate appropriate recommendations. We per-
formed experimental runs using the metadata of each of our intrin-
sic fields separately. In addition, we experimented with the combi-
nation of all intrinsic fields, and with runs that combined all intrin-

sic and extrinsic fields, resulting in a total of 34 runs per algorithm.
We did not test the extrinsic fields separately. Due to space restric-
tions we only report the results of the best runs for each algorithm.

4.1 Content-based Filtering
The first approach we propose is content-based filtering where

the focus is on properly representing the content in our social book-
marking data sets. Based on these representations our aim is to
construct an interest profile of an active user, and then use this
profile to rank-order the unseen items by similarity to the profile,
thereby approximating possible interest in those items. Figure 2
illustrates two different algorithms we propose for content-based
filtering: profile-centric matching and post-centric matching.

The difference between our two content-based filtering algorithms
is the level of aggregation. In our profile-centric matching ap-
proach, we collate all of a user’s assigned metadata into a single
user profile. The intuition here is that by aggregating all of the
metadata assigned by a user we can completely capture his or her
interests. Similarly, we construct item profiles that collate all of the
metadata assigned to those items by all users in the training set. We
then match the active user profiles against the item profiles on sim-
ilarity to produce a ranking of all items, as illustrated in the top half
of Figure 2. After removing the items already in the active user’s
profile, we are left with the final rank-ordered list of recommenda-
tions.

In contrast, post-centric matching operates on the level of indi-
vidual posts. We match each of an active user’s posts separately
against all the other posts of unseen items in the training set, as
illustrated in the bottom half of Figure 2. This leads to a list of
matching posts in order of similarity for each of the active user’s
posts. Since retrieval scores are not directly comparable between
runs, we normalize the original similarity scores simorg into [0,
1] using the maximum and minimum similarity scores simmax and
simmin according to simnorm =

simorg−simmin
simmax−simmin

. We then calculate a
rank-corrected sum of similarity scores for each item il according to
score(i) =

∑ simnorm(il)
log(rank(il))+1 . The final list of recommendations ranks

every unseen item il by their rank-corrected score score(il).

1A

2A

3A

2B

5B

1C

3C

4C

5C

1D

4D

3D

2D

test 
pairs

training 
pairs

Training item profilesAc:ve user profiles

1D 2

3 A C

(a) profile‐centric matching

similarity
matching 4 C

5 B C

Training postsAc:ve user's posts

(b) post‐centric matching

similarity
matching

1 D

1 D

1 D

2 D

. . .

2 A

3 A

2 B

2 A

. . .

Figure 2: Visualization of our two content-based filtering ap-
proaches to item recommendation for a small toy data set.

In both content-based filtering algorithms, we approach the rec-
ommendation process from an IR perspective and restrict ourselves
to measuring textual similarity. We use the open-source retrieval
toolkit Lemur to calculate the similarities between the different
user and item profiles. The Lemur toolkit5 implements different
retrieval methods based on language modeling [20]. Preliminary
experiments comparing language modeling with the OKAPI model
and a tf·idf approach suggested a language modeling approach with
Jelinek-Mercer smoothing as the best-performing retrieval method.
The language models we used are maximum likelihood estimates
of the unigram occurrence probabilities. We filter stopwords using
the SMART stopword list and do not perform stemming.

4.2 Hybrid Filtering
In addition to focusing solely on using the metadata for recom-

mendation, we also consider a hybrid approach that joins content-
based filtering and CF, in the hope of combining the best of both
worlds. Many different combination methods have been proposed
in earlier work [7]. In our hybrid filtering approach we view meta-
data in social bookmarking systems as another source of informa-
tion for locating the nearest neighbors of users and items in CF
algorithms. Figure 3 illustrates this approach. Instead of only look-
ing at the overlap in items that two users have in common when
calculating user similarities, we can use the overlap in the metadata
applied to items to determine the most similar neighbors. Users that
describe their profile items using the same terminology are likely
share the same interests, making them a good source of recom-
mendations. This is similar to the way we used the tag clouds of
users and items to calculate similarity between users and items in
the previous section. The user and item similarities we derive in
this way are then plugged into the standard memory-based CF al-
gorithms as described in Section 3.1. The resulting algorithm is a
feature-augmented hybrid of CF and content-based filtering.

1A

2A

3A

2B

5B

1C

3C

4C

5C

1D

4D

3D

2D

test 
pairs

training 
pairs

Training user profilesAc:ve user profiles

1D 2

(a) user‐based filtering

similarity
matching 2B 5

1A 2 3

1C 3 4 5

Training postsAc:ve user's posts

(b) item‐based filtering

similarity
matching

1 A C D

2 A B D

3 A C

4 C

5 B C

Figure 3: Visualization of our two hybrid filtering approaches
to item recommendation for a small toy data set.

Hybrid filtering also consists of two steps: (1) calculating the
most similar neighbors of the active user or his items, and (2) us-
ing those neighbors to predict item ratings for the active user. The
latter prediction step is performed in the same manner as described

5Available at http://www.lemurproject.org

earlier in Section 3.1. As in CF, with our hybrid filtering algorithms
we also distinguish between user-based filtering, where we gener-
ate recommendations by determining the most similar users, and
item-based filtering, where we recommend the items most similar
to the items in the active user’s profile. Like in Section 4.1, we ap-
proach the first step from an IR perspective and calculate the textual
similarities between users or items. For each user and each item we
generate user and item profile representations, constructed as fol-
lows. All of the metadata text of a user’s posts is collated into a
single “user profile” for that user. Similarly, for the item-based ap-
proach we create item profiles for each item by concatenating all of
the metadata assigned to that item by all the users who have the item
in their profile. This means that items are represented by their ag-
gregated community metadata and not just by a single user’s data.
Again, we used the open-source retrieval toolkit Lemur to calcu-
late the similarities between the different metadata representations,
with the same experimental settings as described in Section 4.1.

4.3 Results & Discussion
Table 3 contains the best runs for each of the four metadata-based

algorithms, as well as our best CF run from Section 3. What we see,
is that on three out of four data sets a recommendation algorithm
that uses metadata is better than the best CF run using data from the
folksonomy. All of our best metadata runs use the combined meta-
data fields. On their own, each field can be seen as an imperfect
representation of the items and users, but combined they alleviate
each others weak points and better represent the content than they
do separately. Only on the Delicious data set do all metadata-based
approaches perform significantly worse than the CF runs. Unfortu-
nately, we do not have an explanation for this. When we compare
the metadata-based approaches with each other, we see that most
differences are not statistically significant. On the Bibsonomy Ar-
ticles data set, the item-centric hybrid filtering approach is signif-
icantly better than the user-centric approach (p < 0.05). On the
CiteULike data set, the profile-centric approach also significantly
outperforms the post-centric and user-centric approaches.

In general, we observe that the profile-centric approach tends
to outperform the post-centric approach on three of our four data
sets. This improvement is statistically significant for the CiteULike
data set with an improvement of 117% (p < 10−6). Only on the
Delicious data set does post-centric matching perform significantly
better (p < 0.05). This advantage of the profile-centric approach
is strongest on the article data sets where the profile-centric ap-
proach performs best for 75% of the all runs with different fields.
In the case of hybrid filtering, the item-centric approach outper-
forms the user-centric approach on three of our four data sets. On
the CiteULike and Bibsonomy Articles data sets these differences
are statistically significant and especially large at 268% (p < 0.05)
and 112% respectively (p < 0.01).

While we do not have room to report the results of all individ-
ual intrinsic field runs, we can report on our general findings. For
all four approaches, the best-performing single fields are AUTHOR,
DESCRIPTION, TAGS, and TITLE, which provide the best individual
results on all four data sets for all approaches. This is not surpris-
ing, as these fields are the least sparsely filled of all the intrinsic
fields. In addition, these four fields are also aimed directly at de-
scribing the content of the items, more so than the conference or
journal titles or the editors. Another interesting observation is that
the TITLE field served as a better source of user and item similar-
ity on the article data sets than on the bookmark data sets. This is
because titles assigned to bookmarks are more variable than titles
assigned to scientific articles, leading to this performance gap.

http://www.lemurproject.org

Table 3: Results comparison of the best metadata-based runs with our best folksonomic CF runs. Reported are the MAP scores
as well as the optimal number of neighbors N where applicable. The best-performing runs are printed in bold. The percentage
difference between our best meta-data approaches and the best CF runs is listed in the bottom row.

Runs
bookmarks articles

BibSonomy Delicious BibSonomy CiteULike
MAP N MAP N MAP N MAP N

Best CF run 0.0370H 3 0.0101H 23 0.1100H 7 0.0887H 30
(it-jaccard-sim) (it-bin-sim) (it-tfidf-sim) (i-bin-idf-sim)

Profile-centric filtering 0.0402H - 0.0014H - 0.1279H - 0.0987H -
(all intrinsic) (TITLE) (all intrinsic) (all extrinsic)

Post-centric filtering 0.0259H - 0.0036O - 0.1190H - 0.0455H -
(all intrinsic) (TAGS) (all intrinsic) (all extrinsic)

User-centric hybrid filtering 0.0218H 2 0.0039O 13 0.0410H 2 0.0608H 2
(URL) (all intrinsic) (TITLE) (TITLE)

Item-centric hybrid filtering 0.0399H 11 0.0017H 8 0.1510H 21 0.0746H 21
(TAGS) (all intrinsic) (all intrinsic) (TAGS)

% Change over best CF run +8.6% -61.3% +37.2% +11.3%

5. RELATED WORK

5.1 Folksonomic Recommendation
One of the first approaches to recommendation for social book-

marking websites was presented by [12], who proposed a graph-
based algorithm called FolkRank. They generated 2D projections
of the tripartite graph and proposed a random walk model similar
to PageRank [17] that uses the steady state node probabilities as
the basis for ranking their recommendations. Clements et al. [9]
also proposed a random walk model for item recommendation, but
combine ratings information with tagging information into a single
model. They also incorporated self-transition probabilities in the
matrix, and used the walk length as an algorithm parameter.

There have also been several adaptations of memory-based algo-
rithms that include information about the tags assigned by users to
items. Approaches that resemble our use of tag overlap for calculat-
ing similarities between users and items include [2], [16], and [22].
Tso-Sutter et al. [23] proposed a novel tag-aware k-NN algorithm
for item recommendation. When calculating the user and item sim-
ilarities they include the tags as additional items and users respec-
tively. They then calculate cosine similarity on these extended pro-
file vectors and fuse together the predictions of the user-based and
item-based filtering runs. This fused model is able to effectively
capture the relationship between users, items, and tags.

Symeonidis et al. [21] were among the first to propose a model-
based approach to incorporating tagging information in recommen-
dation. They propose an item recommendation approach that per-
forms tensor decomposition on the third-order folksonomy tensor.
By performing higher-order SVD, they approximate weights for
each user-item-tag triple in the data set, which can then be used
to support item recommendation. They compared their algorithm
to the FolkRank algorithm [12], and found that tensor decomposi-
tion outperforms the latter. Wetzker et al. [24] took a Probabilistic
Latent Semantic Analysis (PLSA) approach, which assumes a la-
tent lower dimensional topic model. They extended PLSA by es-
timating the topic model from both user-item occurrences as well
as item-tag occurrences, and then linearly combined the output of
the two models. They tested their approach on a large crawl of
Delicious, and found that it significantly outperforms a popularity-
based algorithm.

5.2 Exploiting Metadata for Recommendation
While a significant amount of research has focused on Collabo-

rative Filtering for recommending interesting items, there has also
been considerable work on content-based filtering, which can be
seen as an extension of the work done on information filtering.
Content-based filtering has been applied to many different domains.
Early work on content-based filtering included the NewsWeeder
system by Lang et al. [14], which used the words contained in
newsgroup messages as its features. Alspector et al. [1] compared
a CF approach to movie recommendation with content-based filter-
ing. For their content-based component they built metadata repre-
sentations of all movies using fields such as directory, genre, and
awards, and used linear regression and classification and regression
trees to learn user profiles and rank-order the items for those users.
They found that CF performed significantly better than the content-
based methods, but noted that this was likely due to the poor feature
set they used. Mooney et al. [15] describe Libra, a content-based
book recommender system. They crawled the book metadata from
the Amazon website and represented each book as a bag-of-words
vector. They then used a Naive Bayes classifier to learn user pro-
files and to rank-order unseen books for the user.

We are not the first to suggest the combination of CF with content-
based filtering, as the advantages of both approaches are largely
complementary. CF is the more mature of the two approaches and
works best in a situation with a stable set of items and a dense user
base. Content-based filtering methods are better at dealing with
sparse, dynamic domains such as news filtering, and are better at
recommending for non-average users. Basu et al. [3] were among
the first to propose a hybrid recommender system that used both
collaborative and content features to represent the users and items.
The collaborative features captured what movies a user likes and
the content features included metadata fields such as actors, direc-
tors, genre, titles, and tag lines. They used Ripper, a rule-based
machine learning algorithm to predict which items are interesting,
and found that the combination of collaborative and content-based
features produced the best results. Claypool et al. [8] presented a
weighted hybrid recommender system that calculated a weighted
average of the output of two separate CF and content-based filter-
ing components. The CF component received a stronger weight
as the data sets grows denser, gradually phasing out the influence
of the content-based component. They did not find any significant
differences between the performance of the separate components
or the combined version. Baudisch [4] proposed an innovative ap-
proach to incorporating metadata into CF algorithms by joining the
metadata descriptions to the user-item matrix as additional users.

6. CONCLUSIONS
In this paper we have presented a range of collaborative and

content-based approaches to item recommendation on social book-
marking websites. Our algorithms were evaluated on four realistic
data sets of different domains, and compared to two external, state-
of-the-art approaches. Let us step back now and take stock of our
findings. Tags represent an additional layer of information in the
folksonomy that binds users and items together. These tags can
be used successfully to improve the recommendations of standard
nearest-neighbor algorithms, but this depends on the algorithm. For
item-based filtering, using tags for calculating item similarity alle-
viates sparsity and results in better performance. At the user level,
however, tags do not offer the same benefits.

Metadata can also be used successfully to generate item recom-
mendations for social bookmarking websites. While the best ap-
proach seems to be dependent on the data set and the domain, ag-
gregating all of the intrinsic metadata at the user and item level
results in algorithms that outperform the algorithms using only in-
formation from the folksonomy.

For future work, we intend to examine the benefits of data fusion.
The tag-aware fusion approach by Tso-Sutter et al. [23] demon-
strates the potential of fusing together the outputs of different rec-
ommendations algorithms and representations.

Acknowledgments
The work described in this paper was funded by SenterNovem / the
Dutch Ministry of Economics Affairs as part of the IOP-MMI À
Propos project, and by the Netherlands Organization for Scientific
Research as part of the NWO Vernieuwingsimpuls program.

7. REFERENCES
[1] J. Alspector, A. Koicz, and N. Karunanithi. Feature-based and

Clique-based User Models for Movie Selection: A Compar-
ative Study. User Modeling and User-Adapted Interaction, 7
(4):279–304, 1997.

[2] S. Amer-Yahia, A. Galland, J. Stoyanovich, and C. Yu. From
del.icio.us to x.qui.site: Recommendations in Social Tagging
Sites. In Proceedings of SIGMOD ’08, pp. 1323–1326, New
York, NY, USA, 2008. ACM.

[3] C. Basu, H. Hirsh, and W. W. Cohen. Recommendation as
Classification: Using Social and Content-Based Information
in Recommendation. In Proceedings of the Fifteenth National
Conference on Artificial Intelligence, pp. 714–720, 1998.

[4] P. Baudisch. Joining Collaborative and Content-based Filter-
ing. In Proceedings of the ACM CHI Workshop on Interacting
with Recommender Systems. ACM Press, May 1999.

[5] T. Bogers and A. Van den Bosch. Using Language Modeling
for Spam Detection in Social Reference Manager Websites.
In R. Aly, C. Hauff, I. den Hamer, D. Hiemstra, T. Huibers,
and F. de Jong, editors, Proceedings of the 9th Belgian-Dutch
Information Retrieval Workshop (DIR 2009), pp. 87–94, En-
schede, February 2009.

[6] J. S. Breese, D. Heckerman, and C. Kadie. Empirical Anal-
ysis of Predictive Algorithms for Collaborative Filtering. In
Proceedings of the Fourteenth Annual Conference on Uncer-
tainty in Artificial Intelligence, pp. 43–52, 1998.

[7] R. Burke. Hybrid Recommender Systems: Survey and Exper-
iments. User Modeling and User-Adapted Interaction, 12(4):
331–370, 2002.

[8] M. Claypool, A. Gokhale, T. Miranda, P. Murnikov, D. Netes,
and M. Sartin. Combining Content-Based and Collaborative

Filters in an Online Newspaper. In Proceedings of ACM SI-
GIR Workshop on Recommender Systems, August 1999.

[9] M. Clements, A. P. de Vries, and M. J. Reinders. Optimizing
Single Term Queries using a Personalized Markov Random
Walk over the Social Graph. In Proceedings of ESAIR ’08,
2008.

[10] J. L. Herlocker, J. A. Konstan, A. Borchers, and J. Riedl. An
Algorithmic Framework for Performing Collaborative Filter-
ing. In Proceedings of SIGIR ’99:, pp. 230–237, New York,
NY, USA, 1999. ACM.

[11] J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T.
Riedl. Evaluating Collaborative Filtering Recommender Sys-
tems. ACM Transactions on Information Systems, 22(1):5–53,
2004.

[12] A. Hotho, R. Jäschke, C. Schmitz, and G. Stumme. Infor-
mation Retrieval in Folksonomies: Search and Ranking. In
Proceedings of ESWC ’06, 2006.

[13] A. Hotho, R. Jäschke, C. Schmitz, and G. Stumme.
BibSonomy: A Social Bookmark and Publication Sharing
System. In Proceedings of the Conceptual Structures Tool
Interoperability Workshop at ICCS 2006, pp. 87–102, 2006.

[14] K. Lang. NewsWeeder: Learning to Filter Netnews. In Pro-
ceedings of ICML ’95, pp. 331–339, San Mateo, CA, USA,
1995. Morgan Kaufmann.

[15] R. J. Mooney and L. Roy. Content-Based Book Recommend-
ing Using Learning for Text Categorization. In Proceedings
of DL ’00, pp. 195–204, New York, NY, 2000. ACM Press.

[16] R. Nakamoto, S. Nakajima, J. Miyazaki, and S. Uemura. Tag-
Based Contextual Collaborative Filtering. In Proceedings of
the 18th IEICE Data Engineering Workshop, 2007.

[17] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageR-
ank Citation Ranking: Bringing Order to the Web. Technical
report, Stanford Digital Library Technologies Project, 1998.

[18] G. Salton and C. Buckley. Term-Weighting Approaches in
Automatic Text Retrieval. Information Processing & Man-
agement, 24(5):513–523, 1988.

[19] B. Sarwar, G. Karypis, J. Konstan, and J. Reidl. Item-Based
Collaborative Filtering Recommendation Algorithms. In Pro-
ceedings of WWW ’01, pp. 285–295, New York, NY, USA,
2001. ACM.

[20] T. Strohman, D. Metzler, and W. B. Croft. Indri: A Language
Model-based Search Engine for Complex Queries. In Pro-
ceedings of ICIA ’05, May 2005.

[21] P. Symeonidis, M. Ruxanda, A. Nanopoulos, and
Y. Manolopoulos. Ternary Semantic Analysis of So-
cial Tags for Personalized Music Recommendation. In
Proceedings of ISMIR ’08, pp. 219–224, 2008.

[22] M. Szomszor, C. Cattuto, H. Alani, K. O’Hara, A. Baldas-
sarri, V. Loreto, and V. D. Servedio. Folksonomies, the Se-
mantic Web, and Movie Recommendation. In Proceedings of
the ESWC Workshop on Bridging the Gap between Semantic
Web and Web 2.0, 2007.

[23] K. H. L. Tso-Sutter, L. B. Marinho, and L. Schmidt-Thieme.
Tag-aware Recommender Systems by Fusion of Collabora-
tive Filtering Algorithms. In Proceedings of SAC ’08, pp.
1995–1999, New York, NY, 2008. ACM.

[24] R. Wetzker, W. Umbrath, and A. Said. A Hybrid Approach
to Item Recommendation in Folksonomies. In Proceedings of
ESAIR ’09, pages 25–29, New York, NY, USA, 2009. ACM.

	1 Introduction
	2 Methodology
	2.1 Data Sets
	2.1.1 Data set filtering

	2.2 Experimental Setup & Evaluation

	3 Folksonomic Recommendation
	3.1 Baseline Recommendation Algorithms
	3.2 Tag Overlap Similarity
	3.3 Results & Discussion

	4 Recommendation using Metadata
	4.1 Content-based Filtering
	4.2 Hybrid Filtering
	4.3 Results & Discussion

	5 Related Work
	5.1 Folksonomic Recommendation
	5.2 Exploiting Metadata for Recommendation

	6 Conclusions
	7 References

