
The Copied Item Injection Attack
Nathan Oostendorp
School of Information
University of Michigan
Ann Arbor, MI 48104
oostendo@umich.edu

Rahul Sami
School of Information
University of Michigan
Ann Arbor, MI 48104

rsami@umich.edu

ABSTRACT
In many web communities, users are assigned a reputation based
on ratings on their past contributions, and this reputation in turn
influences the recommendation level of their future contributions.
In this type of system, there is potentially an incentive for authors
to copy highly-rated content in order to boost their reputation and
influence within the system. We describe this strategy as a
copied-item injection attack. We conduct an empirical study of
this attack on the online news discussion forum Slashdot. We find
evidence of its use and demonstrate its effectiveness in eliciting
high ratings. We explore variants of this attack in other domains
and discuss potential countermeasures..

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Information Filtering

General Terms
Reliability, Security.

Keywords
Manipulation, Recommender System, Online Discussion, User-
Contributed Content

1. INTRODUCTION
Numerous online communities offer the ability to post and view
user-contributed content, but participants can suffer from
information overload in high-traffic environments. Often, rating
and filtering systems are used to promote content that has been
created or rated highly by leading users in the community. With
these systems, an item’s initial prominence is often based on the
reputation of the content creator. This reputation is based (at least
in part) on feedback on items that user has created in the past, and
serves as a signal of quality as well as an incentive to improve
quality. For example, reviews by ‘Top Reviewers’ on ePinions
[5] and ‘Elite Members’ on Yelp [22] are prominently displayed,
and comments by Slashdot [21] members with higher ‘Karma’
start at a higher level than other comments.

For these systems, as with other recommender systems, there is
increasing concern about manipulation by users with a vested
interest in promoting or burying certain target items. There is a
growing literature on addressing the threat posed by attackers who
create multiple shill or sybil accounts, and then use them to rate
items in patterns (perhaps randomized) that will lead to
collaborative filtering algorithms boosting or burying the target
items. Defense techniques that have been developed include
detecting and removing anomalous user profiles [2, 17, 12, 20,13],
limiting the influence of user profiles until they have made
contributions [19], and providing monetary incentives for honest
rating [14, 1]. In this paper, we identify a new class of attacks that
user-contributed content recommenders may be vulnerable to: the
injection of duplicated or plagiarized items. We study the
prevalence and effectiveness of this attack using a corpus of over
20 million comments from the technology news website Slashdot,
and propose countermeasures against this attack.

Execution of a copied-item injection attack involves a two-step
process for the attacker: First, she must find old items (comments,
on Slashdot) that have been rated very highly by the community.
She can then duplicate the entire item, or a portion of the item,
and post this to the site as a new item (i.e., a new comment on a
different story), claiming to be the creator. Site moderators do not
always recognize this as a recycled item, and so rate it highly
based on the quality of the original item. In turn, this leads to the
reputation of the attacker being increased, as she is the purported
author of high-quality content. Subsequently, she can exploit this
higher reputation, and the improved visibility it brings, to attract
attention to subsequent original (and possibly inferior) items she
creates.

The first question raised by attacks of this form is: Are they
harmful to the site or the rest of the community? This is not
obvious, because in some contexts it may be a useful contribution
to redirect the community’s attention to valuable information that
was known in the past, but has been forgotten. For any given
domain, this will need to be weighed in comparison to the harm
caused by the attack. In section 5, we argue that, for the Slashdot
domain, the potential damage caused by this attack outweighs the
potential benefit.

Existing techniques to prevent or limit manipulation in
recommenders do not protect against copied-item injection
attacks. This attack does not require the attacker to change her
rating profile, so procedures that detect and filter anomalous
ratings would not work. The influence-limiting approach also is
not effective: Creating a good duplicate, or rating it highly, will be
counted as a contribution by the attacker, but in this context, the
attacker is merely reusing earlier information from raters on the
original item to infer that the copy will be well-liked, but is not

actually contributing new information. Existing mechanisms that
prescribe monetary incentives to rate honestly do not address this
problem, as the raters who rate the copies highly are being honest
about their perceptions of its quality. In section 6 we discuss some
techniques that could be used to combat copied-item injection
attacks.

The rest of this paper is structured as follows. In section 2, we
review the related literature. In section 3, we formalize our
definition of copied-item injection attacks. Section 4 describes our
empirical analysis of this attack on the Slashdot dataset, and our
measurements of the current prevalence and effectiveness of this
attack in the Slashdot domain; we discuss the consequences of
these results in Section 5. In section 6, we discuss
countermeasures against this threat. We conclude and identify
directions for future work in section 7.

2. RELATED WORK
Recently, there has been a rich literature centering on the
vulnerability of collaborative filtering recommender systems to
attack, as well as defenses against those attacks. This was initially
observed by Lam and Riedl [8] and O’Mahony et al. [16]. This
literature has focused on a particular class of threats: attackers can
create “shill” or “sybil” user profiles, and use these to promote or
bury items they have a vested interest in. A number of authors
have studied variants of this attack, as well as defenses against
them; we refer readers to recent surveys by Mobasher et al [15]
and Mehta and Nejdl [13]. Techniques to defend against this
attack include methods to detect and remove anomalous user
profiles [2,17, 12, 20, 13], limiting the influence of user profiles
until they have made contributions [19], and providing monetary
incentives for honest rating [14, 1]. The chief difference with our
current work is that we consider a different class of attack: we
study settings in which, in addition to potentially injecting shill
user profiles, the attacker can inject items with known quality
(derived by copying existing items).

There has also been prior research on the Slashdot moderation
system. Lampe and Resnick [11] analyze the performance of the
moderation system in identifying high-quality comments, and
show that it is largely effective. Lampe and Johnston [9] report
that new users of the site use the moderation feedback they
receive as a cue to learn the norms of the community. Lampe et al.
[10] propose to use a second level of collaborative filtering to
adapt users’ interface views of the moderated comments. Poor
[18] argues that Slashdot is an archetypical public sphere on the
Internet, and describes the role of the Slashdot moderation system
in fulfilling this function.

David and Pinch [3] conducted a qualitative study of strategic
reviewing on Amazon.com. They document several cases of
plagiarized reviews; one of the motives they identify for
plagiarizing is to build up a long profile of ratings with low effort.
This is similar to the modus operandi of our copied-item injection
attack, except that the community’s ratings on the content are
more important than the raw number of comments in our setting.

3. MODEL AND TERMINOLOGY
In this section, we introduce terminology to clarify our discussion
of the copied-item injection attack.

There is a set U of users; we use h to denote an honest
contributor, and a to denote the attacker. A set of items I; each

item i ∈ I has two characteristic features: creator(i) denotes the
user who is listed as the creator of the item, and content(i) is a
description of its content (text, image features, etc.). The attacker
has some target content T that she would like to promote. At any
point in time, an item has a recommendation level rec(i). For
simplicity, we assume that the recommendation level is not
personalized; for personalized recommenders, rec(i) could denote
the average recommendation level among the target community,
or another summary statistic.

Each user u has a reputation R(u). Item recommendation level
rec(i) is assumed to depend on its creator’s current reputation
R(creator(i)) as well as the corpus of ratings on the item set I. The
user reputation R(u) is assumed to be computed based on the
corpus of ratings; we assume that, other things being equal, R(u)
is higher if a particular item i with creator(i)=u has higher
recommendation level rec(i). We assume that two items i,j with
content(i)=content(j) have positively correlated recommendation
levels, because the raters cannot consistently identify the later
item as having duplicated content. This is realistic in a system
with a large number of items and users.

A copied-item injection attack involves the attacker copying
a genuine item i, with a high rec(i), to create a new item c, with
content(c)=content(i), but creator(c)=a while creator(i)=h. The
attacker then waits for c to collect a sufficient number of ratings,
so that rec(c) increases towards the high level of rec(i). Finally,
attacker a creates a new item t with creator(t)=a and content(t)=T.

The simplest measure of the success of an attack is the
difference between rec(t) after this attack then it would have been
if item c was not created. A slightly more nuanced measure,
which is natural is the context of analyzing a’s incentives, is the
increase in a’s net benefit, accounting for the cost of creating the
copy c and the opportunity cost of not creating an original posting
instead. We explore this idea further in section 6.

4. ANALYSIS OF SLASHDOT
Slashdot is a high traffic online news site and an active forum that
receives several thousand user-contributed comments and over a
million pageviews every day [20]. To help the users navigate
among the large amount of user-contributed material, it uses a
rating/moderation system that lets them filter comments based on
a score from -1 to 5. This system has elaborate controls to detect
and discourage abuse, including rules on who can moderate, how
often they can moderate, and how much they influence the
score[11].

4.1 Slashdot’s Moderation System
The system revolves around two scores assigned to user accounts:
karma, which is accrued by contributing comments and receiving
positive moderations on those comments, and mod points, which
allows users to rate other users comments up or down. In this
system, the users and items are linked by authorship, so that each
item's rating is aggregated into karma for the user. A user’s
karma then determines both the probability of acquiring mod
points and the starting score for their posted comments. Because
positive ratings on an authors comments gives the author
additional influence within the system, there is clear incentive to
manipulate the system if a users goal is to gain influence or
prominence in these discussions.

Additionally, users can meta-moderate and judge whether a users
mod points have been spent appropriately. In this process, users
can view comment moderation pairs and give a up/down feedback
on if each moderation was appropriate. Users who frequently are
evaluated as having rated inappropriately become less likely to
receive mod points. This was designed to defend against simple
manipulations where mod points were traded or spent on inferior
comments for the express purpose of improving another users
karma.

While this system has some algorithmic checks for basic profile-
injection strategies such as detection of high-traffic cyclical
moderation patterns between users, there are some manipulation
strategies that can be used to gain undue influence within the
system. The online comic WellingtonGrey has humorously
documented a few of these in flowchart form [6]. This chart
identifies tactics for accruing karma including profile-injection ("a
second account with mod points"), strategically expressing
popular sentiments in comment text ("Is it about Microsoft? Say
they suck. Is it about Apple? Say they rule."). It also advises
recycling of old material. ("Do you have any old +5 posts on this
topic? Quick, post one!") This third tactic describes copying an
item to gain positive ratings, and therefore karma.

The Slashdot environment is likely to be an ideal environment for
this type of attack, due to several factors. Its longevity as a news
source (it celebrated its 10th Anniversary in 2008), and high
volume of traffic gives it a large library of existing comments that
could be recycled. Since so many comments are posted every
day, it is also reasonable to assume readers will be unable to
recognize an older comment out of the millions authored on the
site. Additionally, the nature of "news cycles" means that certain
topics recur frequently: a subject line search shows that Slashdot
has over 200 stories on Windows Vista, which has been in the
news for 2-3 years.

Based on these factors we can make a few generalizations about
where a copied-item attack might be used. Certainly it must have
an environment where the cost of item creation is low and also the
cost of copying an item is similarly low. The incentive to use the
attack must come from when the author receives some indirect
benefit from positive ratings on the items they create. The Copied
Item attack will also be easier where there are extremely large
numbers of items so that the probability of duplication detection
by recognition from readers is low. Finally, it will be easier to
deploy the attack when items have simple data structures, such as
a comment with a block of text, a subject line, and an authorship
reference, as opposed to items that might be indexed on many
different attributes and therefore may have too many similar
attributes to the original.

4.2 Description of Slashdot Data
We used a snapshot of Slashdot’s database from January 28, 2009,
which contained 20,830,313 comments contributed by 307,158
users across 158,867 news story discussions. Each comment
record contained a short subject line, a longer message body, a
timestamp of publication, the final rating for the comment, and
numerical ids referencing for the story and author.
The rating distribution for comments, shown in Figure 1, is
roughly a right-skewed normal distribution centered on the mean

of 1.158 with a standard deviation of 1.149. 1.30 million
comments have a rating of 4 or 5, or about 6.2% of the entire
population.

Figure 1: Score Distribution for All Comments on Slashdot
The comment text length distribution is shown in Figure 2 and
follows a lognormal distribution. After a logarithmic
transformation, the mean comment length is 5.68 (293 characters)
with a standard deviation of 1.11. The entire body of text from all
of these comments is roughly 11.0 billion characters.

Figure 2: Histogram of Log-Transformed Comment Lengths

4.3 Detection of Copied Items
In this study, our goal was to detect plagiarized comments in this
large Slashdot comment corpus. The core of this process was
finding comments that shared large substrings. However, there
are several conflating factors which could legitimately lead non-
attackers to reuse large substrings within their comments: users
quote from earlier comments or quote the same source; there is a
form of political activism that involves posting the same text
repeatedly such as the DeCSS decryption codes; and some users
attempt to disrupt a forum by posting as many junk comments as
possible. We processed the comments conservatively, so that we
would identify a comment as plagiarized only if none of the
conflating factors is a plausible explanation for the duplicated
text.

In order to detect plagiarisms our first step was to detect
comments that had significant duplicate text. We implemented a
Rabin-Karp search [7] with a window of 255 characters. Using
this method we converted each 255-character substring of a
comment message body into a hash value, and searched for co-
occurrences of hash values across multiple comments. The entire
corpus generated about 6.4 billion (hash,comment_id) pairs. Any
comment found to have more than 3 hash collisions with any
single previously posted comment was logged. We then went
through the logged comment pairs and confirmed that there was
significant duplicated text using a longest common substring
algorithm. This process resulted in 196,349 pairs of potentially
plagiarized comments among the 20-million comment corpus.

In order to narrow this set of comment pairs to distinguish
comments that may have been directly plagiarized with intent to
boost ratings, we applied a sequence of filtering steps to the
original set of copied items. These included:

1. We removed any pairs where the original comment had a
final rating score of 3 or less. This was eliminate comment
copies that had little reason to expect a high rating.

2. We removed any pairs where the longest common substring
was less than 90% of the copied comment length. This was
to avoid comments that had significant original material as
well as copied content.

3. We eliminated comment pairs where the copied comment
did not begin with the longest common substring. This rule
was used to weed out quotations since attributions or
quotation marks would typically prefix a quote.

4. We removed any comment pairs that appeared in the same
story. This was to avoid implicit quoting within replies.

5. We eliminated comment pairs where the copied comment
was posted anonymously, rather than by a logged in user, as
anonymous users see no direct benefit from having their
post rated highly.

6. We eliminated comment pairs where the original comment
was copied more than once; this was used to control for
overt reposting, DeCSS code posts, or other forms of
habitual reposting.

With these conservative restrictions in place, the set of probable
plagiarisms was 735 comment pairs, where 423 users had posted
the copied comments. We visually inspected about two dozen
pairs manually to confirm that there was no other apparent reason
for duplication.

4.4 Hypotheses and Results
Intuitively, we expect that copies of highly-rated comments will
also garner high ratings and be useful to potential attackers for the
purpose of acquiring karma. In this section we formulate three
hypotheses that test this conjecture.

Hypothesis 1: Copying a comment with a high rating is profitable
for attackers, in that it produces a comment which is more likely
on average to be highly rated.
If the copying of comments were profitable for an attacker, we
would expect the copies of these high scoring comments to garner
higher ratings than the population at large. We found in the target
population of likely plagiarized comments the rating distribution
of the copied comments was substantially changed versus the
distribution of the global population, as illustrated in Figure 3.
Indeed population of copied comments had a mean of 2.15 vs the
global mean of 1.16, nearly a full standard deviation higher than
the global mean, a difference of 0.987 points. Additionally, 30.4%
of items in the copied set had a rating of 4 or 5 as opposed to
6.2% of the global comment population. A two-sample t-test
confirmed significance of both results (p < 0.001). This
discrepancy confirms Hypothesis 1.

Figure 3: Distribution of Scores for Copied Comments

Hypothesis 2: Copying a comment with a high rating is more
profitable than contribution of other content by the attacker.
To see if this strategy is incentive compatible for the attacker, we
looked at our set of copied comments compared with the mean
rating for the copied item authors other items. By comparing each
of the copied comments scores with the users mean post rating in
a pair-wise t-test, we found the copied item had a mean
improvement of 0.730 points (p < 0.001). This confirms
Hypothesis 2.
Hypotheses 1 and 2 confirm that copies of highly-rated comments
tend to be rated highly even when taken out of their original
context. It is conceivable that these comments add value to the

readers of multiple topics, and that little damage is done by
rewarding the copiers for reposting them. We will discuss the
harm caused by the copied-item attack in more detail in section
5.1. Here, we provide evidence that the copies damage the
signaling quality of the Slashdot rating system:

Hypothesis 3: The average rating of comments, other than the
copied comment, by the copier is lower than the average rating of
other comments by the original poster.
In order to test this hypothesis, we first excluded all instances in
which the original comment was posted by an anonymous user. (If
the original comment was posted by an anonymous user, we could
not identify other comments posted by the same user; further, it is
clear to the readers that a comment is anonymous, and hence it is
unlikely that they would improve their expectation of other
anonymous comments). For each of the 683 surviving instances,
we measured the average rating of all comments (other than the
copied comment) posted by the original poster, and the average
rating of all comments (other than the copied comment) posted by
the copier. We find that the average rating for the original poster
is 1.70, vs 1.38 for the copiers; a two-sample t-test confirms
significance (p <0.001). This suggests that the copiers actually
had lower quality than the original posters, and thus, the high
rating they receive for the copied content reduces the ability of
readers to distinguish them from the higher-quality posters who
posted the original comments.

Hypothesis 4: Copied comments are much more likely to be topic
starters (comments starting a discussion thread) than other
comments, since it would be more difficult to have a copied
response seem appropriate as a reply to multiple comments.
We looked at the location of our copied comment population in
Slashdot discussions and found that of the 734 copied comments
573 were topic starters. If you contrast this with the entire
comment population of 20.8 million, 6.28 million comments
started topics. A two-sample t-test indicates that the copied
comments are 47.8% (78.0% vs 30.2%) more likely to be topic
starting than a comment in general (p < 0.001). Hypothesis 3 is
therefore confirmed. The consequence of this hypothesis is that
copying can distort the pattern of interaction on the site, skewing
it towards breadth rather than depth of exchange.

5. DISCUSSION
With H1, H2, and H3 confirmed, it seems evident that item
copying has been successfully used on Slashdot to systematically
garner high ratings for comments and therefore improve the users
karma score. We expect that this type of item injection attack has
potential to be a widespread problem both in the realm of Slashdot
and other moderation-based comment systems as well as other
collaborative filtering spaces. In any forum where inserting
copies of highly rated content is incentive compatible and
technically possible there is a strong likelihood of abuse. At the
core of this incentive problem on Slashdot is the transitive
property of item scores to users, where a user stands to directly
gain influence in the system by receiving positive feedback on
their items. However, systems containing low-cost item creation
may present different incentives for this type of attack, and it may
create variations in overall impact.

Simple manipulations to try and disrupt this type of behavior may
add only marginal costs to the effort required to copy comments.
On March 20, 2001 Slashdot deployed a code update that
attempted to curtail comment “re-posting” by logging an MD5

hash encoding of the entire comment text. Subsequent comments
that were posted with the same MD5 sum as a previous comment
were rejected from the discussion. We looked at our copied
comments sample set and found 28 comments posted before this
feature was deployed, 26 of which were exact copies. After this
change it was not possible to post the identical comment again;
however, it was possible to make a trivial change to a comment,
such as addition of whitespace, and repost. Of the 707 copies
detected dated after the March 20, 2001, 618 were identical to the
original except for the insertion or deletion of punctuation and/or
whitespace. After controlling for whitespace and non-
alphanumeric characters we found no significant difference
between entire/partial match ratio between the two populations
using a binomial test.
We suspect that this may possibly be due to the extreme ease with
which a duplicated post could be altered by adding even a single
whitespace character anywhere in the text. It also may be that our
conservative heuristics used to detect likely plagiarisms select
primarily towards exact matches in this data set.

5.1 Is Slashdot comment copying really
harmful behavior?
From a certain perspective, it may be reasonable to point out that
the copied comments on Slashdot do add value to the system. In a
sense, the positive ratings that the duplicated comments receive
are signals from the raters that the comment has value, and this
may add insights that otherwise wouldn’t be seen in this
discussion environment. While it may take a certain moral
flexibility to ignore the taboo of plagiarism, the copied item
posters could be thought of as agents of conversational arbitrage,
seeking out and shining up old gems from previous discussions.
However, simply looking at the reposted comments as harmless
injections ignores other externalities of having unattributed
reposting in a discussion system. Although the user ratings reflect
the immediate visceral reaction of the raters to the content, this
may not capture the entire value of a piece of content to the
system.

For the Slashdot domain, we believe that the potential damage
outweighs the potential benefit: Users can always jog the
community’s memory by quoting earlier comments with
attribution instead of resorting to plagiarizing comments, and
quoting is fairly widespread, so there is little additional benefit
accrued through these attacks. In fact, given the availability of
quoting as an alternative which meets community norms and
requires negligible additional effort by the copier, the fact that a
user would choose to not credit the original author is illuminating:
it indicates that they expect to gain a better reception (and better
ratings) by suppressing the fact that the content was duplicated.
This in itself suggests that the ratings are not perfectly aligned
with the community’s perception of the long-term value of a
contribution.

It is likely any systemic method to gain karma would have an
undesirable effect on the Slashdot system, and become
increasingly widespread if the technique was communicated
between users. One problem is this tactic distorts karma as a
signal of someone who has contributed good fresh content. For
instance, in the Slashdot system, karma has a direct impact on the
starting score of a users post. Therefore a user with high karma
user may start their post at 2, rather than 0 or 1. This means that

the comment ratings lose their effectiveness as a signal of quality
as well in this particular situation. This loss of signaling quality
was borne out in our confirmation of hypothesis 3.

The other potential impact if this tactic of copying comments was
widespread is that it would have a negative impact on the dynamic
actual conversations that occur within Slashdot. Hypothesis 4
confirms that these comments tend to be discussion-topic starters,
but any replies to these copied comments would be very likely to
be disregarded by the attacker. They are, after all talking to a
different person than the user who originally generated the
comment text. This means in as copied comments became more
frequent within the system, the harder it would be for users to find
genuinely interactive experiences.

Ultimately, we believe the threat is significant enough that
defenses against it merit careful consideration. This phenomenon
potentially weakens both incentive and signaling function of the
site’s reputation system: Users may be incentivized to copy items
as a lower-cost way of building reputation than creating original
content, even though the latter is a more valuable contribution;
and, future original contributions by the attacker may start as a
misleadingly high recommendation level, because they reflect the
quality of the author of the original item, rather than the attacker’s
inherent quality. Additionally, it may create an incentive for
copying content without attributing the original author, which can
disrupt the norms of the online community.

5.2 Variants in other domains
It is possible that a copied item injection attack could potentially
appear in other types of recommender spaces where items can be
inserted into the system with relatively minor barriers, just as
profile injection attacks are potentially problematic in spaces
where a user creation in a system is extremely low-cost. In
particular, any systems where ratings on items transitively score
the users who create the items will provide incentive for this type
of attack.

Although the Slashdot recommender system uses a simple voting
method of collaborative filtering, it is sophisticated in tracking
reputations for users and using these reputations to allocate
visibility and influence. Reputation tracking is a powerful method
of identifying high-quality contributors over time, so we expect
that many recommenders for social web applications will adopt
some it in some form. Then, copied-item injection attacks,
perhaps in conjunction with other attacks, will become a potential
threat.

In particular, it is the combination of an item and profile attack
that could be extremely problematic. A sophisticated attacker
could use the copied items to establish validity for shill items
posted by shill accounts, and likewise rate other comments
similarly with shill accounts. This would potentially create a
system where scores could be quickly increased on both shill
users and items.

In a movie recommender system (or other traditional item
recommenders) a combination of an item and user injection could
potentially distort recommender predictions if site maintainers
were not vigilant about repairing duplication. A copied item,
whether legitimately cataloged as a variant of an original film (ie
a “directors cut”) or sorted under a different name, could be used
as a target item in a manipulative attack in order to “push” or
“nuke” according to an agents agenda.

Another application in which copying items can increase the
power of an attacker is in search engine website rankings. Here,
the `ratings’ are expressed in the form of other sites linking to a
particular site. By copying some content from a high-quality site,
an unscrupulous site operator can increase the chances of other
genuine sites linking to his site. This will drive up the ranking of
his site on search engine results pages; some of these pages can be
used to damage readers through unrelated advertisements or
fraudulent content.

There are several other domains that could potentially see item-
injection attacks. In the news website space, gaming a
collaboratively filtered news aggregator such as Digg [3] could be
profitable by increasing traffic and therefore ad revenue.

6. POTENTIAL COUNTERMEASURES
In this section, we describe a framework for reasoning about
countermeasures to the copied-item injection attack, and identify
several possible techniques that could effectively combat this
threat. There are two core factors behind the copied-item attack:
(1) Users have an incentive to increase their reputation, and incur
effort costs when they attempt to do so, either by copying items or
by creating fresh contributions. (2) Copied items are likely to
garner ratings that are similar to those of the original item. We
frame our discussion of countermeasures with these two aspects
of the problem in mind.

For a given domain, it is helpful to visualize a space A of
possible pieces of content, coupled with a distance metric that
captures the similarity between two pieces of content: The smaller
the distance between x and y, the more similar the pieces of
content. For example, A could be the space of all text strings, and
the distance measure could be based on edit distance, or keyword
frequencies. For a movie domain, A could be defined by a set of
features (title, actors, director, etc.), with a distance metric based
on this feature similarity. Modeling the content space in this way
allows us to reason about near-copies as well as exact copies. The
cost and benefit to an attacker a in executing an item-copy
injection attack can then be described in terms of this reference
model. When a copies an item i to generate a near-copy item c,
her cost is presumably increasing in the distance between
content(i) and content(c), reflecting the effort of obfuscating the
fact that the item was copied; for example, it takes some effort to
reword a comment or change the whitespace and punctuation. The
benefit accruing to the attacker depends on the ratings that c
garners; given that i was a very highly-rated item, the benefit
might be highest for an exact copy but drop off as the distance
between content(i) and content(c) increases.

Techniques to combat item-copy injection attacks can work
by raising the cost of carrying out the attack, imposing a penalty if
the attack is detected, or reducing the benefit of creating the copy
item c.

• One natural technique is to detect copies, and either
prohibit them outright, or impose a reputation penalty
when they are injected. This is the approach that Slashdot
implemented when they prohibited exact copies of
comments. In practice, however, this imposes an
insignificant cost on attackers, as they only have to make
trivial changes to a previous comment. Instead of merely
identifying exact copies, a slightly more sophisticated
approach might detect an item within a certain distance of

a pre-existing piece of content, using a distance metric
appropriate for the domain. This has a two-fold
advantage: it forces attackers to put in more effort in
modifying the original content, and in doing so, the copy
is less similar to the original item, leading to a lower
expected benefit. Another variation would be to not
prohibit near copies, but rather, to merge similar items
into a single logical ‘item-cluster’.

There are two drawbacks to this approach, however. First,
it is only as good as the distance metric used. This might
spark an arms race between attackers and site managers,
in which attackers continually find clever ways to retain
the quality of the original item while appearing to be
distant under the current metric, and site managers
continuously update the metrics to plug these gaps.
Second, as the distance threshold increases, there is a
growing threat of false positives: genuine items that get
mistaken for copies. This could hamper the contribution
of honest users.

• Alternatively, the defense can focus on reducing the
benefit to users of copying items, relative to more socially
valuable activities such as the creation of original content.
The attacker derives benefit because of the increase in her
reputation and the privileges that accompany a better
reputation. This suggests that a more sophisticated
reputation update may be effective: When a user a creates
an item i, rather than increase her reputation based merely
on the average rating of i, we should account for the
average rating of similar items as well. For example, the
creator’s contribution might be calculated as the
difference between the average rating of item i and the
average rating of the nearest (in terms of content distance)
pre-existing item j; or, perhaps, use a similarity-weighted
average of all pre-existing items. This reduces the benefit
of copying high-quality items, hopefully to the point that
users choose more valuable ways of building their
reputation. Genuine posting of similar items would still
be possible, but there would be a reduced incentive to do
so.

The same approach can be extended to tailor the
incentives of raters as well as creators. The Influence
Limiter [18] scores raters based on the amount they
improve predictions for future raters. Loosely, a rater who
is the first to rate a high-quality item high will gain the
highest score, while subsequent raters will be measured as
having diminishing contributions. A rater’s accumulated
score is then used to limit their influence on others’
predictions. In the case of a profile injection attack, the
effectiveness of each shill is stunted – as it adds no
information, it will not earn a high reputation score, and
hence have limited influence. As described in [18], the
Influence Limiter might be susceptible to copied-item
injection attacks: The attacker expects the copy c to have
similar ratings to the original i, and thus, attacker shills
can be the first to put in high ratings where relevant. This
can be countered by scoring the early raters on items
relative to a benchmark prediction that is the average of
pre-existing items with similar content.

• A third technique might be to rely on targeted moderation
that flags items as ‘legitimate’ or ‘plagiarized’. Human

moderators could be shown nearest content items, and
might be more skilled at distinguishing genuine forms of
copying from reputation-boosting plagiarism. The
tradeoff, of course, is that this requires additional human
effort that might be better spent in creating or rating
items. In addition, as with rating systems, there would
need to be a system to prevent attacker shills from
controlling this moderation process, perhaps necessitating
a level of “meta-moderation” as well.

One constraint on all of these techniques is that calculating
distances between pieces of content in a large database can be
very computationally intensive. This might preclude the use of
these techniques in a online mode. Instead, the automated
techniques could be used offline to periodically filter items or
adjust reputations. Human moderators trying to locate similar
pieces of content online would have to rely on simple distance
metrics.

It is not possible to meaningfully evaluate the performance of
these techniques on our existing dataset, as the attackers are likely
to adapt the detailed form of attack once a specific
countermeasure has been deployed. This is borne out by the way
in which users sidestepped Slashdot’s check for identical
comments, as described in section 5. The evaluation of the relative
effectiveness of these countermeasures is therefore left as a
subject for future work.

7. FUTURE WORK
In this paper, we have identified a class of attacks, copied-item
injection attacks, that user-generated content recommenders on
the web may be vulnerable to. We have studied this attack in a
single domain, but the attack pattern is relevant to many different
settings; likewise, countermeasures developed in one setting will
be helpful in others as well. There are several important directions
for future work. The development and implementation of practical
countermeasures should be a priority for applications where the
copied item injection attack is a feasible strategy. For some
domains where duplicate detection of content is impractical, one
direction of research may be to use patterns of user ratings to
identify similarity between items.
Additionally, it would be useful to conduct empirical or
experimental measurement of the prevalence of this attack in
other domains. This would give confirmation as well as a broader
understanding of attack patterns and the motivations of attackers.

 Once countermeasures have been implemented and deployed, and
users have had a chance to adapt to them, it will be important to
experimentally determine their effectiveness by comparing the
frequency and impact of attacks with and without defenses.

8. ACKNOWLEDGMENTS
This work was supported by the National Science Foundation
under award IIS-0812042. We would also like to thank the
Slashdot Engineering team at SourceForge Inc, specifically Rob
Malda, Jamie McCarthy, and Uriah Welcome for their help in
accessing and interpreting Slashdot comment data. We are also
grateful to Paul Resnick at the University of Michigan for his
helpful feedback and suggestions on this project.

9. REFERENCES
[1] R. Bhattacharjee and A. Goel. Algorithms and incentives for

robust ranking. In Proceedings of the ACM-SIAM
Symposium on Discrete Algorithms (SODA ’07), 2007.

[2] P.-A. Chirita, W. Nejdl, and C. Zamfir. Preventing shilling
attacks in online recommender systems. In WIDM 05, pages
67–74, 2005.

[3] S. David and T. Pinch. Six degrees of reputation: The use
and abuse of online review and recommendation systems.
First Monday, 6, 2006.

[4] Digg, 2009. http://www.digg.com.
[5] Epinions, 2009. http://www.epinions.com.

[6] W. Grey. The slashdot flowchart, 2007.
http://miscellanea.wellingtongrey.net/2007/04/28/slashdotflo
wchart/

[7] R. M. Karp and M. Rabin. Efficient randomized pattern-
matching algorithms. IBM J. Res. Dev., 31(2):249–260,
1987.

[8] S. K. Lam and J. Riedl. Shilling recommender systems for
fun and profit. In Proceedings of WWW ’04., pages 393–
402, 2004.

[9] C. Lampe and E. Johnston. Follow the (slash) dot: effects of
feedback on new members in an online community. In
Proceedings of the 2005 international ACM SIGGROUP
conference on supporting group work, 2005.

[10] C. Lampe, E. Johnston, and P. Resnick. Follow the reader:
Filtering comments on slashdot. In Proceedings of CHI 07
Conference on Human Factors in Computing Systems, pages
1253–1262, 2007.

[11] C. Lampe and P. Resnick. Slash(dot) and burn: Distributed
moderation in a large online conversation space. In
Proceedings of ACM CHI 2004 Conference on Human
Factors in Computing Systems, 2004.

[12] B. Mehta, T. Hoffman, and P. Fankhauser. Lies and
propaganda:detecting spam users in collaborative filtering. In
Proceedings of IUI’07, 2007.

[13] B. Mehta and W. Nejdl. Attack resistant collaborative
filtering. In Proceedings of ACM SIGIR ‘08, 2008.

[14] N. Miller, P. Resnick, and R. Zeckhauser. Eliciting honest
feedback: The peer-prediction method. Management Science,
51(9):1359–1373, 2005.

[15] B. Mobasher, R. Burke, R. Bhaumik, and C. Williams.
Towards trustworthy recommender systems: An analysis of
attack models and algorithm robustness. ACM Transactions
on Internet Technology, 7(2):1–40, 2007.

[16] M. O’Mahony, N. Hurley, and G. Silvestre. Promoting
recommendations: An attack on collaborative filtering. In
Proceedings of the 13th International Conference on
Database and Expert System Applications, pages 494–503.
Springer-Verlag, 2002.

[17] M. P. O’Mahony, N. J. Hurley, and G. C. M. Silvestre.
Detecting noise in recommender system databases. In
Proceedings of the 2006 International Conference on
Intelligent User Interfaces, pages 109–115, 2006.

[18] N. Poor. Mechanisms of an online public sphere: The
website slashdot. Journal of Computer-Mediated
Communication, 10(2), 2005.

[19] P. Resnick and R. Sami. The influence limiter: Provably
manipulation-resistant recommender systems. In Proceedings
of the ACM Recommender Systems Conference (RecSys07),
2007.

[20] J. Sandvig, B. Mobasher, and R. Burke. Robustness of
collaborative recommendation based on association rule
mining. In Proceedings of the 2007 ACM Conference on
Recommender Systems, 2007.

[21] Slashdot, 2009. http://www.slashdot.com.
[22] Yelp, 2009. http://www.yelp.com.

