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ABSTRACT 

Social tagging systems present a new challenge to the researchers 
working on recommender systems. The presence of tags, which 
uncover the reasons of user interests to tagged items, opens a way 
to increase the quality of recommendations. Yet, there is no 
common agreement of how the power of tags can be harnessed for 
recommendation. In this paper we argue for the use of spreading 
activation approach for building tag-aware recommender systems 
and suggest a specific version of this approach adapted to the 
multidimensional nature of social tagging networks. We introduce 
the asymmetric measure of relevancy (proximity) of two nodes on 
a multidimensional network as a cumulative strength of 
(weighted) multiple connections between two nodes, which 
includes paths and graph-structures connecting the nodes. This 
metric is also applicable to measure relevancy of two sub-graphs. 
Spreading activation methods (SAM), which usually employ 
breadth first search, are an efficient way to define and compute 
such measure taking into account not only links constituent a path, 
but the properties of nodes in the path such as node’s types and 
outdegree.  

We apply this notion of relevancy to measure similarity of 
collaborative tagging systems users and present the results of 
numerical simulation showing that spreading activation methods 
allow us to discriminate between diverse graph-structures 
connecting  users via resources and tags. We show that the results 
of simulation are stable w.r.t. the variation of parameters of 
spreading activation algorithm used in our experiment. 

Categories and Subject Descriptors 
H.3.4 [Information Storage and Retrieval]: Systems and 
Software – information networks; H.3.5 [Information Storage 
and Retrieval]: Online Information Services – data sharing.  

General Terms 
Algorithms, Measurement, Performance, Experimentation. 

Keywords 
Tagging, relevancy propagation, spreading activation, graph-
based mining, structural cohesion, CiteULike.  

1. INTRODUCTION 
Social tagging systems introduced new challenges to the well-
established area of recommender systems. While the majority of 
content based, collaborative, and hybrid recommender approaches 

were created for a bi-modal world of items and users (connected 
by rating incidents), social tagging systems present a more 
complicated world of users, items, and tags (connected by tagging 
incidents, also known as tagging instances). While some early 
works attempted to treat the problem of recommendation in social 
tagging systems in an “old way”, basically ignoring the tags, the 
majority of researchers in this new area argued that tags are vital 
for successful recommendation in this new domain and called for 
tag-aware recommenders. They argued that on one hand, tags can 
compensate the loss of ratings (which are not available in most 
social tagging systems), while on the other hand, tags can make 
recommendation more precise because they provide not only the 
information of what items are of interest to a user, but also why 
they are of interest [8,14,20,26].  

Despite the common agreement that tags should be used as a 
successful recommender component of a social tagging system, 
there is no agreement on how it should be done. As a result, a 
multitude of approaches emerged just over the last three years. 
Roughly, these approaches can be classified as an extension of 
either content-based or collaborative filtering approaches. The 
former group emphasizes connections between items and tags 
treating tags as an alternative (or additional) way to describe items 
and establish a profile of user interests [9, 15]. The latter group 
emphasizes connections between users and tags to establish a 
better similarity between users in a social tagging system [25, 26]. 

We argue than inherently networked nature of social tagging 
systems calls for some alternative recommender approaches, 
which are not just simple extension of either content-based or 
collaborative technologies. A successful recommender approach 
for this new context should fully employ the complex network 
structure of a typical social tagging system and use all kinds of 
links: user-tag, item-tag, user-item. We think that the most 
promising in this context is the spreading activation approach. 
This approach has been originally developed in the field of 
cognitive psychology [3] to model human brain and later explored 
in the context of information retrieval [7].  

The power of spreading activation approach was recognized in the 
area of recommenders and other personalized systems as well; 
however, so far these approaches form just a small minority. The 
problem is that the traditional user-item universe does not provide 
a sufficiently rich network for spreading activation technology. 
Thus most of known recommenders based on spreading activation 
were built for context where an additional network can be formed 
such as a hypertext network for Web page recommendation [17] 



or a network of entities and concepts in semantically enriched 
recommenders [4, 12, 18].  

We believe that social tagging systems will provide a new 
promising context as well as new challenges for recommenders 
based on spreading activation. What we consider as the main 
challenge is the multidimensional nature of a typical social 
tagging network. Almost all existing applications of spreading 
activation for personalization and recommendation operated in 
relatively homogeneous kinds of networks with 1-2 kinds of 
nodes and one kind of links. In contrast, even a simplified social 
tagging network, where each tagging event is represented by a 
group of three links (user-tag, item-tag, and user-item) includes 
three types of nodes and three types of asymmetric links. This 
organization requires some more sophisticated spreading 
activation approaches.  

Our paper attempts to address this challenge by introducing the 
asymmetric measure of relevancy (proximity) of two nodes on a 
multidimensional network as a cumulative strength of (weighted) 
multiple connections between two nodes which includes paths and 
graph-structures connecting the nodes. This metric is also 
applicable to measure relevancy of two sub-graphs. Spreading 
activation methods, as breadth first search, is an efficient way to 
define and compute such measure taking into account not only 
links constituent a path, but the properties of nodes in the path 
such as node’s types and outdegree.  

We apply this notion of relevancy to build a tag-aware approach 
to measure similarity between users in collaborative tagging 
systems. The paper presents the results of a numerical simulation 
showing that spreading activation algorithms allow discriminating 
the degree of connectivity of users between certain graph-
structures connecting users via resources and tags. We 
demonstrate that the results of the simulation are stable w.r.t. the 
variation of parameters of the spreading activation algorithm used 
in our experiment. 

The rest of the paper is organized as follows. In section 2 we first 
provide a short overview of related work focusing on the use of 
spreading activation methods (SAM) to propagating and 
redistributing relevancy. We also theorize about desired properties 
of relevancy propagation on multidimensional network models of 
Web. 2.0 data needed to create efficient and scalable 
recommender systems.  
In section 3 we render a formal model of folksonomies (tripartite 
hypergraph) as a multidimensional network with four types of 
nodes corresponding to users, resources, tags and instances of 
tagging. In section 4 we present the results of numerical 
simulation. Finally, section 5 describes the conclusions and future 
work 

2. RELATED WORK 
2.1 Overview of Relevancy Propagation Using 
Spreading Activation Methods 
In neurophysiology interactions between neurons are modeled by 
way of activation which propagates from one neuron to another 
via connections called synapses to transmit information using 
chemical signals. The first spreading activation models were used 
in cognitive psychology to model these processes of memory 
retrieval [5, 3]. This framework was later exploited in Artificial 
Intelligence as a processing framework for semantic networks and 
ontologies, and applied to Information Retrieval [2, 7, 19] as the 

result of direct transfer of information retrieval ideas from 
cognitive sciences to AI. In other domain, [27] created spreading 
activation models for trust propagation on the Web. 

In [21] and [23] authors work with the notion of the relevancy of 
ontological concepts to a free text. They propagate relevancy of 
the concepts explicitly mentioned in a document to other 
ontological concepts using a spreading activation algorithm. Their 
algorithm works in such a way, that after short number of iteration 
the topical foci of a cohesive coherent text become the most 
activated concepts (even if they were not explicitly mentioned in 
the text).  

In [22] authors summarize their experience in creating graph-
based related item recommender for activity centric environment 
on a Nepomuk Social Semantic Desktop [24]: relevancy of a 
“pile” of nodes representing resources and concepts is propagated 
to other nodes. Authors in [22] conclude that as a graph-mining 
technique, spreading activation combines fuzzy clustering and soft 
inferencing, and therefore might be suitable for relevancy 
propagation. Propagation should lead to discovery of new nodes 
which have short length paths to many (if not all) nodes from the 
initial set. In other words, newly discovered nodes should 
minimize the “distance” to the initial set of nodes, i.e., nodes 
which might be considered as potential centroids of strong 
clusters induced by the initial conditions. Since partitioning of the 
nodes according to these clusters is not needed, processing of 
polycentric queries [22] for related item recommendation could be 
done using soft clustering methods.  On the other hand, relevancy 
propagates through links. an alternative view on the related item 
recommendation is that newly discovered nodes must be 
connected to the initial conditions by particular types of directed 
links. Therefore, propagation of relevancy might be interpreted as 
fuzzy inference.  

In [23], the authors go further in analyzing SAM as a very general 
class of iterative algorithms for relevancy propagation, local 
search, relationship/association search, and computing of dynamic 
local ranking. Authors indicate that the same iterative algorithms 
were used long before in numerical simulation in physics, 
mechanics, chemistry, and engineering sciences. Hence, the 
algorithm is quite polymorphic: “Using the same iterative 
algorithm, with one set of parameters one can emulate heat 
transfer; with another set of parameters the same algorithm will 
show us the behavior of oscillating strings”. 

2.2 Spreading Activation in Recommender 
Systems 
Spreading activation approach as a technology for 
recommendation in various kinds of networks belongs to a 
broader group, which is typically referred to as graph-based 
approaches for recommendation. In addition to several recent 
papers mentioned in the introduction, which explicitly use 
spreading activation to build recommender systems, we can a few 
other examples of using various graph-based approaches. In [1], 
the authors presented a theoretic approach where users are 
modeled as nodes in a directed graph and the directed links 
represent how representative is a user of another user's behavior. 
In [11], the authors use spreading activation to deal with the 
sparsity problem in collaborative filtering. They try to tackle the 
problem finding transitive relationships by comparing three 
different methods on a bipartite graph which represented 
consumer-product interactions. Other interesting approach was the 



one presented in [10], where the authors propose a constrained 
spreading activation algorithm having good results compared with 
a traditional memory-based approach over a small subset of the 
Movie Lens data set. These approaches show the potential of 
spreading activation to be used on recommender systems, but they 
don't take into account the nature of multidimensional networks, 
such as folksonomies derived from collaborative tagging systems, 
where different types of nodes, links and relationships can have a 
strong influence in the design of the algorithms. 

2.3 Propagating Relevancy on 
Multidimensional Web 2.0 Networks 
We focus on the applications of SAM to measure similarity 
between the users of collaborative tagging systems modeled as 
multidimensional networks. Indeed, we treat graph-based 
“similarity” of users as a particular case of “relevancy” of nodes 
on multidimensional networks. In this subsection we provide 
consideration on which properties of a generic class of spreading 
activation algorithms are suitable methods for modeling relevancy 
propagation. 

The general inspiration behind using graph-based methods to 
model relevancy (energy, trust, risk, etc.) propagation on networks 
is probably the same in many domains: the relevancy is treated as 
a kind of energy which might be “injected” into some nodes, and 
propagated through links to other nodes: “… the closer node x to 
the injection source s, and the more paths leading from s to x, the 
higher the amount of energy flowing into x in general” [27]. 
Therefore, spreading activation methods (SAM), which usually 
employ breadth-first search), are an efficient way to propagate 
relevancy. Since according [23] SAM is a broad class of 
algorithms, the choice of algorithm’s parameters is crucial and can 
be done taking into account the nature of the target application. 

First of all, Web 2.0 data could be accurately modeled only by 
multidimensional networks. For instance, formal model of a 
folksonomy as tripartite hypergraph [13] converted to network 
representation, has four types of nodes: users, resources, tags, 
instances of tagging. The shortest possible path between two 
folksonomy users has the length four (for instance, user1- instance 
of tagging1- tag - instance of tagging2 - user2).  As compared to 
trust propagation in heterogeneous networks, the amount of 
relevancy flowing from one node to another should depend not 
only on types of links, but on properties on nodes in paths. 
Connections via resources might be more important than 
connections through tags. In our future work we are going to 
exploit what [23] calls “the importance of nodes”, but one 
property of nodes which should significantly affect the 
propagation, can be immediately inferred from the local topology 
of the network, namely from the number of outcoming links from 
a node. Ambiguous and top popular tags might be linked to big 
number of tag instances and big number of users. Intuitively, 
connections via such tags should provide less (if any) contribution 
to the similarity of users as compared to the connections through 
less popular tags.  

In [27], the authors assume that nodes with the higher shortest 
path distance from the injection source should be accorded less 
trust in general. This property of trust propagation is probably not 
applicable to propagating relevancy to measure similarity of 
folksonomies users. Moreover, we suggest that for many 
applications on multidimensional networks the length of the 
shortest path might have positive correlation with the relevancy, 

but is probably much less important and is too coarse-grained 
measurement compared to trust propagation. 

A final observation on relevancy propagation on multidimensional 
networks: we don’t assume that all (or many) aspects of such 
propagation can be properly understood in terms of paths. We 
assume that there might be structures (like network B on the Fig. 
1), which might significantly affect the relevancy propagation.  

3. THE ALGORITHM 
The algorithm we used in our experiment in general follows [23] 
and employs iterative steps where activation is propagated 
between neighbor nodes. To facilitate comparison of activation 
distributions on the same or different networks and to account for 
dissipation of activation caused by list purging step in spreading 
activation, we introduce the step of normalization (calibration). 

A multidimensional network can be modeled as a directed graph, 
which is a pair G = (V,E) where 
V –  is the set of vertices vi 
E –  is the set of arcs ej  
init: E → V,  is the mapping that provides initial nodes for arcs 
term: E → V, is the mapping that provides terminal nodes for arcs 
imp – is importance value of arcs and nodes. 
w – “weights” 

F(E) – is the “activation” real valued function 

The algorithm has the following steps 

Initialization
Sets the parameters of the algorithm, network, and initial 
F(E) as a list of non-zero valued nodes V n 

  

Iterations 
a. List Expansion. 

   

b. Recomputation: The value at each node in the list is 
recomputed based on the values of the function on 
nodes which have links to the given node and types 
of connections. 

c. List Purging: We exclude the nodes with the values 
less than a threshold. 

d. Conditions Check To Break Iterations. 
Normalization
 Linear scaling up or down the numerical values of the 

activation level of all nodes in the list of activated nodes to 
satisfy some conditions of activation conservation 

   

The list of nodes (value of the function after spread of 
activation) ranked according F values.   

Output 

Recomputation step is as follows: 

 We have the list of nodes Vn.  

 Input/Output Through Links Computation. 



– For each node v we compute the input signal to each arc 
e, such that init(e)=v. This computation can be based on 
the value F(v), the outdegree of a node etc. For instance, 
if the node v has n outgoing arcs of the same type, each 
arc e might get input signal: 

I (e) = F(init(e))  ∙  (1 /  outdegree(v) ^beta ) 

where beta might be equal to 1. It could be also less 
than one, in which case the node v will propagate more 
activation to its neighbors than it has. (This might be 
fine for some applications). 

– When the signal (“activation”) passes through a link e, 
the activation usually experiences decay by a factor 
w(e):  

O (e) = I(e) ∙ w(e) 

 Input/Output Of Node Activation 

– Before the pulse, the node v has the activation level 
F(v).  

– Through incoming links v get more activation: 

Input(v) = Σ  O(e) 

for all links  e  such that  init(e) ∈Vn, term(e) = v. 

– By dissipating the activation through outgoing 
links, the node v might lose activation: 

Output(v) = Σ  I(e) 

for all links  e  such that  init(e) = v, term(e) ∈Vn  

 Computation Of New Level Of Activation 

Fnew(v) = F(v) + Input (v) 

To apply spreading activation to measure “similarity” of two 
nodes on a network, we put the initial activation 1.0 at the first 
node, and measure the activation at the second node after certain 
number of iterations. 

4. EXPERIMENTS 
To apply graph-based mining on web 2.0 data we model the data 
by a multidimensional network (where nodes and links are typed, 
and links are “weighted”). 

In our experiments we use three networks representing 
instantiations of collaborative tagging systems. Each of these 
networks has two actors (A1 and A2), two resources (R1 and R2), 
and four instances of tagging (I1, I2, I3 and I4). For instance, the 
network A on the figure 1 has the instance of tagging  I1 with 
links to the actor A1, the resource R1, and the tag T; this sub-
network shows that the actor A1 used the tag T for the resource 
R1. Correspondingly, the links from the instance l2 show that the 
actor A1 used the tag T for the resource R2. The instances I3 and 
I4 show tagging for the user A2. The network A represents the 
situation where both actors used the same tag for both resources. 

In the implementation of our algorithm, each of these networks is 
modeled by a directed graph, where for each link we create two 
reciprocal arcs. In each experiment we set initial activation at the 
node corresponding to the actor A1 and after several iterations of 
the algorithm we compute the “similarity” of actors A1 and A2 
using the method described in 3. 

 
 

 

In [23], the authors view SAM in terms of graph-mining 
algorithms as a technique for soft clustering. The major 
parameters of SAM affecting “the scale” of the phenomena to be 
discovered are signal decay and number of iterations (larger 
number of iterations and low decay are needed to discover 
“bigger” clusters). Since Web 2.0 applications are at the focus of 
this paper, we run the experiments varying these two parameters. 
Our target was to find regions of the parameters which allow us 
consistently to capture structures like that on the Fig.1.  

In this paper, we use SAM as a link analysis algorithm for local 
ranking, in the same way as PageRank algorithm is used for 
global ranking [28]. The major difference between them is that 
PageRank iteratively redistributes the relevancy measure which is 
initially set to each node of the network, while we use SAM to 
iteratively redistribute the relevancy measure (the activation) from 
one (or more) nodes sometimes referred to as “seeds”. 

Diameter of graphs B, and C is 6, with the number of iterations 
less than 6 the activation from a node on a network will not 
necessarily reach all the nodes. The limit distribution (distribution 
of the activation after a number of iterations big enough), 
produced by SAM, in general does not depend on the choice of 
the initial seed. This behavior gives us the estimate that local 
ranking, which is highly sensitive to sub-graphs with the diameter 

Figure 1.  Three networks modeling instantiations of 
collaborative tagging systems. 

 
 

 
 



6, could be achieved when the activation will be redistributed on 
such sub-graphs several times which amounts roughly to 12-48 
iterations.  

Our underlying common-sense assumption is that connectivity of 
A1 and A2 is bigger in the network A than in B and C; and that 
the connectivity of A1 and A2 in the network B is bigger than in 
the network C. In other words, if we denote the final activation of 
the node v in the network configuration X as x(v), we would 
expect that sensible local ranking results should satisfy inequality: 

                         (1) 
The shortest path between the nodes A1 and A2 equals to 4 in the 
network A, and to 6 in networks B and C. So the first part of the 
inequality is easily achieved with any parameters of the algorithm 
(provided that the number of iterations is not less than 3). To 
investigate how the algorithm can discriminate between 
configurations B and C we introduce the network discrimination 
factor as 

                             (2) 

We computed the NDF ranging the number of iterations from 1 to 
50, and the decay factor from 0 to 1. Figure 2 shows the results, 
where the X axis represents number of iterations, the Y axis the 
decay factor, and the Z axis the network discrimination factor. 

 
 
 

The results in figure 2 show that we maximize the NDF when 
running our spreading activation algorithm with a decay factor 
between 0.8 and 0.9, and 24 iterations. Additionally, the plot 
shows stable results for our algorithm, which suggests that 
selecting values in close ranges will not return unexpected or 
random activation values. 
We have shown that on small networks SAM might be used to 
measure similarity between users. It is part of our future plans to 
show that on big multidimensional networks representing Web 2.0 
data activation initiated at one of the nodes could be kept flowing 
within strong clusters induced by the initial set of activated nodes 
(because of high degree of clustering); and therefore the results 
could be generalized to real-world data. 

5. CONCLUSIONS AND FUTURE WORK 
Our paper argued for the use of spreading activation as a 
recommendation mechanism in multidimensional networks 
produced by collaborative tagging systems. We introduced the 
new network-based asymmetric measure of relevancy of two 
nodes on a multidimensional network and applied it to build a tag-
aware approach to measure similarity between users in 
collaborative tagging systems. While it is just one of several 
possible ways to use spreading activation in collaborative tagging 
context, we consider it as the best way to start. As demonstrated 
by the stream of recent works, calculating similarity between 
users is a component of the recommendation process where the 
use of tags can provide a most valuable impact [25, 26].  

The results of our experiments show that our metrics can be used 
to differentiate activation levels on different network 
configurations and they also show a stable behavior when input 
parameters are changed. These results lead us to pass to the next 
step on our research on this bottom-up approach, which is to 
prove that our results are repeatable in large scale networks. We 
are currently running our experiments on real social network data 
that we have collected from the social bookmarking service 
CiteUlike. 

In this paper we presented applications of spreading activation 
methods to local ranking on small networks. We didn’t prove yet 
that the same “good” properties hold true when the algorithm runs 
on massive networks. However, multidimensional networks which 
model web 2.0 data and processes usually exhibit small world 
phenomena properties, which include small average distance and 
clustering effect. According to [23] spreading activation might be 
considered as a method for soft clustering. Intuitive justification 
of the use of spreading activation for ranking is the same as for 
the PageRank algorithm [28]: a node can have a high rank if there 
are many nodes that point to it, or if there are some nodes that 
point to it and have a high rank. On each iteration strongly 
activated nodes continue to support the high level of activation of 
nodes to which they have outcoming links, while nodes which 
have little connection with strongly activated nodes eventually 
lose their activation. Therefore, even if constrained spread of 
activation from one node might in several iterations reach 
significant portion of the network (small average distance), strong 
level of activation will be supported mainly in strong clusters 
induced by the node. 
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