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Abstract
We present a simulation framework to examine the
impact of sensor noise on the performance of user
models in the museum domain. Our contributions
are: (1) models to simulate noisy visit trajectories
as time-stamped sequences of (x, y) positional co-
ordinates which reflect walking and hovering be-
haviour; (2) a discriminative inference model that
distinguishes between hovering and walking on the
basis of (simulated) noisy sensor observations; (3) a
model that infers viewed exhibits from hovering co-
ordinates; and (4) a model that predicts the next ex-
hibit on the basis of inferred (rather than known)
viewed exhibits. Our staged evaluation assesses the
effect of these models (in combination with sensor
noise) on inferential and predictive performance,
thus shedding light on the reliability attributed to
inferences drawn from sensor observations.

1 Introduction
The construction of models of visitors to public spaces, in
particular museums, has been of interest to the user modelling
and cultural tourism communities for some time [Cheverst
et al., 2002; Hatala and Wakkary, 2005; Stock et al., 2007].
These models are used to predict visitors’ interests in order
to personalise the content of presentations, or make recom-
mendations of locations (e. g., exhibits) to be visited. In most
systems developed to date, these user models are acquired
through the active participation of the visitors, e. g., by pro-
viding feedback through a device. This requirement imposes
a burden on the visitors, which in turn may reduce the reli-
ability of the obtained information, e. g., if visitors provide
feedback only occasionally.

Recent advances in mobile computing and sensing tech-
nologies have enabled the instrumentation of physical public
spaces, which in turn has enabled the automatic tracking of
visitors’ movements [Hazas et al., 2004; Lassabe et al., 2009;
Philipose et al., 2004]. Information regarding visitors’ where-
abouts and the time spent at different locations supports the
automatic inference of visitors’ interests and the prediction of
their trajectories [Bohnert and Zukerman, 2009]. Clearly, in-
ferences from positional and timing information are more in-
direct and uncertain than visitors’ direct feedback. However,

the information stream is reliable, as opposed to information
obtained from visitors’ direct participation.

In order to personalise content and generate recommen-
dations on the basis of information provided by unobtrusive
sensors (rather than from user participation), questions of in-
terest include: (1) how to infer a visitor’s viewed exhibits
solely from sensor readings; and (2) how to predict the next
exhibit(s) a visitor is likely to view. In this paper, we present
a realistic simulation model which offers some insights to an-
swer these questions, and may be employed to make deci-
sions regarding the instrumentation of a space.

In previous research, we offered a simulation framework
for investigating the impact of different sensing technologies
on the predictive performance of user models [Schmidt et al.,
2009]. The aim was to provide a practical solution to the
problem of assessing the accuracy of the user models that can
be derived from a sensor-based system prior to actually de-
ploying a particular technology. However, that work made
strong simplifying assumptions that affected the realism of
the framework, and hence the significance and usefulness of
its results, viz: (1) sensors can detect, with some error, a
single square (in a grid representation of the museum floor)
where a visitor is statically positioned while viewing an ex-
hibit ik; and (2) the previously viewed exhibits i1, . . . , ik−1
are known (not just the previous coordinates of a visitor)
when predicting the next exhibit ik+1. In reality, people tend
not to remain stationary at an exhibit, and they certainly do
not ‘teleport’ between squares on the floor. Rather, they walk
between exhibits, and often hover around an exhibit to view
it from different angles or distances. Thus, when sensing a
visitor’s movements in a museum, the best we can hope for is
a time-stamped trajectory of (x, y) coordinates (sampled at a
particular rate), where the observed coordinates diverge from
the true positions of the visitor by some sensor error. As a
result, the sequence of previously viewed exhibits cannot be
known with certainty — at best a likely sequence of exhibits
can be inferred from the sensor observations.

In this paper, we propose a simulation framework that
eschews the above assumptions, significantly extending our
previous work and the insights obtained from it. Specifi-
cally, our contributions are: (1) models to simulate noisy visit
trajectories as time-stamped sequences of (x, y) positional
coordinates which reflect walking and hovering behaviour;
(2) a discriminative inference model that distinguishes be-



tween hovering and walking on the basis of noisy sensor ob-
servations; (3) a model that infers likely viewed exhibits from
time-stamped sequences of hovering coordinates (instead of
a single static grid square per exhibit as done in our previous
work); and (4) a model that predicts the next exhibit on the ba-
sis of these inferred (rather than known) viewed exhibits. At
present, we assume that the sensors can only track a visitor’s
position. However, our models may be extended to incor-
porate orientation information and occasional user feedback
to improve the accuracy of inferences obtained from sensor
readings, and hence the predictions of subsequent exhibits.

The research in this paper builds on the framework de-
scribed by Schmidt et al. [2009], which comprises a predic-
tive user model of exhibits to be viewed, and a spatial viewing
model of positions from which each exhibit can be seen. Like
Schmidt et al., we evaluate our framework in the context of
the Marine Life Exhibition at Melbourne Museum. In this pa-
per, we augment the evaluations done by Schmidt et al., pre-
senting the results of a staged evaluation which examines the
effect of different information-based models, in combination
with sensor noise, on inferential and predictive performance.

This paper is organised as follows. Section 2 discusses re-
lated research. Section 3 briefly summarises the key compo-
nents of our previous simulation framework. Our approach
for simulating detailed coordinate-based visit trajectories is
presented in Section 4, and our inference and prediction mod-
els are described in Section 5. The results of our evaluation
are presented in Section 6, followed by concluding remarks
in Section 7.

2 Related Research
The research community has initiated a wealth of projects
that investigate user modelling and personalisation technol-
ogy in the context of physical spaces. For example, in the mu-
seum domain, HyperAudio dynamically adapted hyperlinks
and presented content to stereotypical assumptions about a
visitor, and to what the visitor has already accessed through
a mobile device and seems interested in [Petrelli and Not,
2005]. The CHIP project harnessed Semantic Web tech-
niques to provide personalised access to digital museum col-
lections both online and in the physical museum [Wang et al.,
2009]. This was done by using explicitly initialised user mod-
els. The Kubadji project investigated user and language mod-
elling techniques that rely on mobile technology deployed in
museums [Bohnert and Zukerman, 2009]. While the focus
was on modelling visitors based on non-intrusive observa-
tions that can be derived from sensor readings, the project did
not evaluate its models with real-world sensing technology.

In contrast to these projects, which did not employ real-
world sensing technology, other research projects incorpo-
rated wireless technology or sensor networks. The GUIDE
project developed a handheld tourist guide for visitors to the
city of Lancaster, UK [Cheverst et al., 2002]. It employed
user models obtained from explicit user input to generate dy-
namic and user-adapted city tours, where the order of the vis-
ited locations could be varied. The project used wireless ac-
cess points to stream content data to a user’s device, but did
not employ the wireless network to localise the user. The

PEACH project developed technology which adapts its user
model on the basis of both explicit user feedback and im-
plicit observations of a user’s interactions with a mobile de-
vice [Stock et al., 2007]. This user model was used to gener-
ate personalised multimedia presentations for museum visi-
tors. The PEACH project also explored simple localisation
technology, but did not derive user modelling information
from sensor readings. The augmented audio reality system
for museums ec(h)o adapted its user model on the basis of a
visitor’s movements through the exhibition space and his/her
interactions with the system [Hatala and Wakkary, 2005]. The
collected user modelling data were used to deliver person-
alised information associated with exhibits via audio display.
However, the project did not investigate the effect of locali-
sation accuracy on the quality of the resultant user modelling
information.

In contrast to the above research, this paper investigates
the impact of using sensing technology as a means for gath-
ering information about a user, i. e., to learn a user model. To
this effect, we offer a simulation framework which generates
noisy visit trajectories that reflect walking and hovering be-
haviour, and investigate the relationship between sensor noise
and inferential and predictive user model performance.

3 Prerequisites
This section briefly summarises four key components of the
simulation framework introduced by Schmidt et al. [2009],
which is extended in this paper: (1) frequency-based Transi-
tion Model; (2) Spatial Exhibit Viewing Model; (3) generation
of exhibit tours; and (4) generation of exhibit squares.

Frequency-based Transition Model. We use a frequency-
based Transition Model to represent visitors’ movements be-
tween museum exhibits [Bohnert et al., 2008; Schmidt et
al., 2009]. This model, which is implemented as a 1-stage
Markov model, estimates the transition probabilities Pi,j be-
tween exhibits i and j from frequency counts of exhibit tran-
sitions that are derived from observed visit trajectories. When
estimating the transition probabilities, additive smoothing is
applied in light of our small dataset of 44 observed trajecto-
ries (Section 6.1):

P̂i,j =
ni,j + αi

Ni +Mαi
for i, j = 1, . . . ,M

where ni,j counts the transitions from exhibit i to exhibit j,
αi is a smoothing constant, Ni =

∑
k=1,...,M ni,k is the total

number of times exhibit i was viewed, and M is the number
of exhibits.

Spatial Exhibit Viewing Model. Our modelling frame-
work employs a probabilistic model of the viewing areas for
each exhibit in the museum space, which divides the space
into a grid of squares (for the Marine Life Exhibition, the grid
size is 47 × 61 = 2, 867 squares, where a square is approxi-
mately 30 cm × 30 cm; Figure 1). The model specifies a dis-
crete probability distribution which represents P(i |x, y), the
probability of a visitor viewing each exhibit i from a square
at position (x, y).



(a) Smooth representation (ground truth) (b) Noisy representation (ν = 2 metres)

Figure 1: Two representations of part of a simulated visitor pathway

Generation of exhibit tours. We generate tours of viewed
exhibits as follows. Each tour begins at a fictitious start ex-
hibit i0 and ends at a fictitious end exhibit iend. For each
exhibit ik−1 already in the tour (k = 1, 2, . . .), the next ex-
hibit ik is generated by sampling from a categorical distri-
bution specified by the transition probabilities Pik−1,ik . This
step is repeated for each added exhibit ik until the end ex-
hibit iend is reached.

In addition to this sequence of exhibits, our walking/hov-
ering model (Section 4) requires the time that a visitor spends
at each viewed exhibit. We generate a viewing time Ti at
exhibit i by randomly drawing from an exponential distribu-
tion, i. e., Ti ∼ Exp(λi), where the average viewing time λi
at each exhibit i is estimated by maximum likelihood from
the 44 observed tours in the Marine Life Exhibition dataset.

Generation of exhibit squares. Once a tour of exhibits has
been simulated, Schmidt et al. [2009] generate a single view-
ing square at position (x, y) for each viewed exhibit i in the
tour. This is done by sampling from the categorical distribu-
tion P(x, y | i) over all exhibit squares, where P(x, y | i) is de-
rived by applying Bayes’ theorem to the viewing probabilities
P(i |x, y) obtained from the Spatial Exhibit Viewing Model.

In this work, we use Schmidt et al.’s model to generate the
first hovering square for each viewed exhibit (Section 4.2).

4 Simulation of Coordinate-based Visitor
Pathways

The previous section outlined our method for generating ex-
hibit tours with a single static grid square per exhibit. In this
section, we simulate (smooth and noisy) coordinate-based
visit trajectories which reflect two types of behaviour: walk-
ing between exhibits, and hovering at exhibits. Our ap-
proach comprises the following four steps, which are de-
scribed below: (1) generation of connected paths of walk-
ing squares between exhibits; (2) generation of connected
paths of hovering squares to simulate viewing behaviour at
exhibits; (3) smoothing of the obtained square trajectory; and
(4) simulation of noisy sensor observations from this smooth
pathway representation.

Figure 1 depicts two representations of part of a simulated
visit trajectory (we show the part for the Tool Time exhibit
in the Mealtime section of the Marine Life Exhibition). Fig-
ure 1(a) shows the trajectory obtained after simulation (walk-

ing is represented by a red/grey line, hovering is represented
by a blue/dark-grey line on pink/shaded squares, and wall
squares are coloured in blue/grey), and Figure 1(b) is the rep-
resentation obtained by applying Gaussian sensor noise at a
level of ν = 2 metres.

4.1 Generating Walking Squares
In Section 3, we generated one viewing square for each ex-
hibit in a visitor’s tour. However, visitors do not simply tele-
port between squares. To produce a more realistic continuous
visit trajectory, we must build a path that links these squares.
At first glance, it seems that a shortest-path algorithm may be
used for this task. However, trajectories generated in this way
exhibit an unnatural level of repetition and purposefulness,
tending to run directly along exhibition walls. In practice,
visitors tend to move more erratically. To simulate these be-
haviours, we incorporate stochastic effects into the shortest-
path procedure. Specifically, we model the probability of
moving into a square as being proportional to the probability
of viewing the destination exhibit from this square, moder-
ated by the visitor’s propensity to avoid walls and to meander.
Our approach uses parameters that control two behavioural
aspects of visitors: (1) how erratic or purposeful their move-
ment is; and (2) their propensity to avoid walls.1 These con-
siderations are implemented as follows.

Assume we want to generate a sequence of walking squares
to connect two exhibits i and j in a tour. Let (xs, ys) de-
note the end square of exhibit i (i. e., the source square),
and (xd, yd) the starting square of exhibit j (i. e., the des-
tination square). Also, treating diagonal squares as adja-
cent, let the candidate squares of a square (x, y) be the
eight squares surrounding this square. We start by employing
Dijkstra’s algorithm [Dijkstra, 1959] to generate a distance
matrix D whose elements Dx,y correspond to the shortest-
path distances from each square (x, y) to the destination
square (xd, yd). Then, we generate a sequence of walking
squares as follows. For each square (xn, yn) (starting from
the source square (xs, ys)), the next square (xn+1, yn+1) that
a visitor moves into while walking is sampled from among

1In our evaluation, we use fixed parameter values. Alternatively,
one could sample the values for each trajectory simulation. Also,
certain parameter values in combination with different transition
models may yield different types of museum visitors, e. g., the ant,
fish, butterfly and grasshopper types [Véron and Levasseur, 1983;
Zancanaro et al., 2007].



(xn, yn)’s eight candidate squares, provided that the move
does not take the visitor farther away from (xd, yd) (the dis-
tance information is obtained from D). In this procedure, the
sampling is performed from a categorical distribution over
the eight candidate squares, whose probabilities are propor-
tional to the probabilities of viewing the destination exhibit
from each square, moderated by the visitor’s propensity to
avoid walls and to meander (the probabilities are zero for the
squares that take the visitor farther away from (xd, yd)). The
visitor moves in this fashion until (xd, yd) is reached. At that
point, the trajectory between (xs, ys) and (xd, yd) is com-
plete, and timestamps are iteratively added to the trajectory
assuming a constant walking speed vw for the visitor.

4.2 Generating Hovering Squares
Once at an exhibit, visitors usually observe the exhibit for
some time before moving on to the next one. Additionally,
visitors typically do not remain static, but move around to ex-
amine the exhibit from different angles and distances. This
so-called hovering behaviour is included in our simulation
framework by varying the movement model described in Sec-
tion 4.1, so that a visitor is more likely to move towards a
square from which the exhibit is more likely to be viewed,
but may not move at all.

Timestamps are added to the generated hovering squares
assuming a hovering speed of vh < vw (as for the walking
case, we assume a constant hovering speed). The hovering
behaviour continues until the sampled viewing time Ti for
the current exhibit i is exceeded (viewing time sampling is
described in Section 3).

4.3 Smoothing the Square Trajectory
To obtain a smooth positional tour representation from a
time-stamped trajectory of squares, i. e., (〈tn, xn, yn〉;n =
1, 2, . . .), we fit piecewise cubic splines to the coordinate-
individual trajectories 〈tn, xn〉 and 〈tn, yn〉 (one piecewise
cubic spline each). We do this by applying the splinefit
package from the Matlab Central File Exchange [Lundgren,
2007]. This approach uses the method of least squares to fit
splines with reduced degrees of freedom (we reduce the num-
ber of spline pieces by 70% compared to direct interpolation),
and generates a smooth representation of the trajectory in the
sense that (x, y), (ẋ, ẏ) and (ẍ, ÿ) are all continuous in time.

The resultant representation may be interpreted as a contin-
uous positional representation of the visit trajectory, enabling
us to obtain a visitor’s position at any point in time. Fig-
ure 1(a) depicts part of one such smooth visit trajectory.

4.4 Simulating Sensor Noise
The visit trajectories obtained so far are smooth and continu-
ous. However, in practice, any trajectory-based input to a user
modelling system would be acquired through sensors that de-
liver only a visitor’s approximate position (due to measure-
ment error) at a certain sampling rate.

In this paper, we explore sensor noise that may be at-
tributed to range-based positioning technology, e. g., WiFi
and ultra-wide band (UWB) [Zhao and Guibas, 2004]. We
follow a widely accepted model for sensor noise in this set-
ting, and assume that the measured coordinates (x′, y′) are

obtained by distorting the true coordinates (x, y) through
additive Gaussian noise and sampling at regular time in-
tervals (for our experiments, we use a constant sampling
rate of one second). Specifically, the measured coordinates
are found by sampling from a bivariate normal distribu-
tion N((x, y), σ2I) with mean (x, y) and covariance σ2I ,
where σ is a constant which reflects the expected accuracy
of the sensing infrastructure, and I is the identity matrix.
For example, if the infrastructure is able to deliver posi-
tions within an accuracy level of ν metres 95% of the time,
then σ = ν/2 would be a suitable value, as this places ap-
proximately 95% of the probability mass within the circle de-
fined by (x′ − x)2 + (y′ − y)2 = ν2. Figure 1(b) depicts
part of a noisy visit trajectory which was sampled by follow-
ing this procedure for the pathway shown in Figure 1(a) at a
sampling rate of one second with ν = 2 metres.

5 Inference and Prediction of Viewed Exhibits
from Positional Coordinates

When information on a visitor’s movements is automatically
gathered through sensors, all that is available is a sequence
of (typically noisy) time-stamped (x, y) coordinates (Sec-
tion 4.4).2 Assuming that we have a method for detecting
whether a visitor is hovering (and hence viewing an exhibit),
we can decompose the complete (x, y) sequence into sub-
sequences of (x, y) coordinates that pertain to hovering be-
haviour (Section 5.1). From these, we can infer which exhibit
the visitor is viewing (Section 5.2), and employ a model to
predict which exhibit the visitor is likely to view next on the
basis of this information (Section 5.3).

5.1 Classification-based Inference of Walking and
Hovering

To infer walking and hovering behaviour from positional
(x, y) coordinates, we employ a window-based approach. We
first derive indicative features from a window comprising the
previous ω sensor observations, and then provide these fea-
tures to a purpose-trained classifier for inference. The output
of this binary classifier is a label which indicates whether a
visitor’s activity is walking or hovering.

Prior to deriving the features, we smooth the noisy sen-
sor observations 〈t, x, y〉 by fitting piecewise cubic splines to
the 〈t, x〉 and 〈t, y〉 trajectories [Lundgren, 2007], and eval-
uating these splines at the original timestamps (similarly to
Section 4.3). Using the resultant smoothed sensor observa-
tions, we compute the following feature set of size 2ω + 7
that pertains to (non-directional) velocity and acceleration:

• ω−1 velocities (each of them calculated as the length of
one of the ω − 1 velocity vectors, which in turn are de-
rived from the ω smoothed positional coordinates from
within the window)

• Minimum and maximum of the ω − 1 velocities

• Mean and median of the ω − 1 velocities

• Standard deviation of the ω − 1 velocities
2For simplicity of notation, we use (x, y) instead of (x′, y′) in

the remainder of the paper to denote the measured noisy coordinates.



• ω−2 accelerations (each of them calculated as the length
of one of the ω − 2 acceleration vectors, which in turn
are derived from the ω − 1 velocity vectors)
• Minimum and maximum of the ω − 2 accelerations
• Mean and median of the ω − 2 accelerations
• Standard deviation of the ω − 2 accelerations
In our experiments (Section 6), we use support vector ma-

chines (SVM) to train the classifiers. We employ C-SVC
SVMs with an RBF kernel from LIBSVM [Chang and Lin,
2001], using features derived from the previous five (x, y) ob-
servations (ω = 5).

5.2 Probability-based Inference of Exhibits
In this section, we describe how we infer the exhibits most
likely viewed by the visitor while hovering.

After inferring a visitor’s activity (i. e., walking or hover-
ing) for each sensor observation 〈t, x, y〉, we extract from the
complete (x, y) sequence the sub-sequences of (x, y) coordi-
nates that correspond to hovering behaviour. For each sub-
sequence of hovering-labelled (x, y) coordinates, we then
calculate the following exhibit scores:

score(i) =
∏
(x,y)

P(i |x, y) for all exhibits i (1)

where P(i |x, y) is the probability of a visitor viewing ex-
hibit i while hovering at position (x, y) (Section 3). To
smooth out possible errors introduced in the classification
step (Section 5.1), we delete walking labels that separate two
consecutive sub-sequences of hovering labels for which the
same exhibit has the highest score. We also remove hovering-
labelled sub-sequences of length 1 (the exhibit scores of any
affected sub-sequences of hovering labels are recomputed).
Finally, all scores are normalised to obtain probabilities.

For each sub-sequence of hovering labels, this procedure
yields a probability distribution which specifies how likely a
visitor is to view each exhibit.

5.3 Model-based Prediction of Exhibits
Once the viewed exhibits are inferred, we can use this infor-
mation to predict a visitor’s next exhibit for each (x, y) po-
sition at which the visitor is hovering.3 However, as seen
in the previous section, there is some uncertainty regarding
which exhibit the visitor is actually viewing. We therefore
use the Weighted approach described by Schmidt et al. [2009]
for predicting the next exhibit from positional information.
For each possible next exhibit i, the Weighted approach es-
timates Pnext(i |x, y) as the weighted average of the transi-
tion probabilities Pj,i from each possible current exhibit j
to exhibit i. The weights are the probabilities P(j |x, y) of
viewing exhibit j when standing within the square at posi-
tion (x, y) (Section 3).

P̂next(i |x, y) =
M∑
j=1

{P(j |x, y)× Pj,i }

3Predictions of a visitor’s next exhibits can be combined with
predictions of the personally interesting exhibits to generate recom-
mendations of exhibits that may be overlooked if the predicted next
exhibits are actually visited.

In this calculation, the transition probabilities Pj,i are de-
rived from the information provided by the Transition Model
in Section 3 by setting to zero the columns of the transition
matrix that pertain to the already viewed exhibits, and renor-
malising each row of the matrix to 1.4

6 Evaluation
This section presents our data collection method and datasets,
and describes our experiments and results.

6.1 Data Collection and Datasets
Our dataset of real-world exhibit tours was obtained at the
Marine Life Exhibition at Melbourne Museum. It consists
of a (manually collected) record of the exhibits viewed by
44 visitors, and the viewing times at the exhibits. On aver-
age, each visitor viewed 7.2 of the M = 22 exhibits. The
data for the viewing model described in Section 3 were ob-
tained separately, by manually annotating a grid-based map
to record the positions of visitors to the exhibition.

These data were used together with the method from
Section 4 to generate 1000 simulated visits, where each
visit comprises time-stamped sequences of (typically noisy)
(x, y) coordinates at different noise levels — each element
consisting of 〈t, x, y〉. These 1000 simulated visits are the
basis for our evaluation. When generating the visits, we as-
sumed a constant walking speed of vw = 3 km/h and a hover-
ing speed of vh = 1 km/h. Also, we used a sampling rate of
one observation per second.

Current range-based positioning systems are often based
on processing radio signals, e. g., WiFi and ultra-wide band
(UWB). WiFi-based technology typically achieves accuracy
levels of 2 to 3.5 metres [Bahl and Padmanabhan, 2000;
Lassabe et al., 2009], while future UWB-based systems
are expected to achieve accuracy levels of up to 0.15 me-
tres [Hazas et al., 2004]. We therefore considered accuracy
levels of ν = 0 to 4.5 metres when generating the visits.

6.2 Experiments and Results
To evaluate our models, we applied bootstrapping [Mooney
and Duval, 1993] as follows. The 1000 generated visits were
split into a training set of 100 visits and a test set of 900 vis-
its. 200 bootstrap samples were then generated from the test
set, with each bootstrap sample being constructed by sam-
pling from the 900 visits with replacement (200 is the recom-
mended upper bound on the number of samples for bootstrap-
ping [Mooney and Duval, 1993]). The training set remained
the same for all samples. Our results are averaged over the
bootstrap samples.5

We conducted three experiments with these training and
test sets: (1) walking/hovering classification; (2) inferring
exhibits from positional hovering coordinates; and (3) pre-
dicting the next exhibit. All performance differences be-
tween models were found to be statistically significant with

4Our observations indicate that visitors rarely return to previ-
ously viewed exhibits. Hence, we focus on unseen exhibits.

5We employed bootstrapping, because only the test data varies
for this technique, compared to cross validation which conflates the
variation in the training and test data.



Table 1: Inference models and their experimental conditions

Models Time & (x, y) Walk/Hover Exhibits
Previous Current

TLall sequence of 〈t, x, y〉 Inferred Inferred Inferred
TLAall sequence of 〈t, x, y〉 Given Inferred Inferred
ExhprevTLAcurr sequence of 〈t, x, y〉 Given Given Inferred
Schmidt et al. one 〈x, y〉 per exhibit N/A Given Inferred
Exhall sequence of 〈t, x, y〉 Given Given Given
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Figure 2: Average walking/hovering classifica-
tion accuracy against sensor error
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Figure 3: Average log loss of actually viewed
exhibits against sensor error

p � 0.001 (evaluated using two-tailed paired t-tests on the
bootstrap samples).

Table 1 summarises the models used in our experiments,
indicating the inferred versus given information (only the
first two models, i. e., those with grey background, are used
in our first two experiments). The top model TLall (Time-
Location for all observations) is the most realistic, as its in-
formation is akin to that obtained from sensor readings (i. e.,
a sequence of time-stamped (x, y) coordinates). The models
then become progressively less realistic, starting with TLAall

(Time-Location-Action for all observations), where the walk-
ing/hovering labels are considered given, up to Exhall, where
the walking/hovering labels, previous exhibits and current ex-
hibit are given. To contextualise our work, Table 1 also shows
Schmidt et al.’s model [Schmidt et al., 2009] (typeset in ital-
ics), but its results are excluded from our evaluation, as it does
not model trajectories or temporal information.

Walking/hovering classification. To evaluate the perfor-
mance of our walking/hovering classification method (Sec-
tion 5.1), we gave as input sequences of times and posi-
tions (〈tn, xn, yn〉;n = 1, 2, . . .). For each walking/hovering
classification, we considered the five positional observations
made within the last four seconds (ω = 5). As visitors hover
slightly less than 69% of the time, and walk between exhibits
for the rest of the time, we under-sampled the hovering por-
tion of the training data to balance the classes.6

6We under-sampled the larger class, rather than over-sampling
the smaller class, in order to retain the variance of the latter class.
We also experimented with unbalanced data, but the performance

Figure 2 depicts classification accuracy as a function of
sensor error, where the majority class baseline (MCL) as-
sumes that a person is always hovering (the results are av-
eraged over the 22 exhibits of the Marine Life Exhibition).
Our results show that for no sensor error, our SVM classi-
fier (TLall) is able to infer whether a visitor is walking or
hovering with approximately 97% accuracy. Classification
accuracy decreases to about 88% as the sensor error increases
to 2.75 metres (the middle of the range for WiFi technology).

Inferring exhibits from positional hovering coordinates.
To evaluate the performance of our mechanism for inferring
the sequence of visited exhibits, we gave as input sequences
of times and positions (〈tn, xn, yn〉;n = 1, 2, . . .) and walk-
ing/hovering labels (one label for each element in a se-
quence). The probabilities of viewed exhibits were calculated
once for given (known) walking/hovering labels, and once for
labels inferred using the SVM classifier (Section 5.1). The in-
ferences were made as described in Section 5.2, and resulted
in a probability distribution of the exhibit being viewed by a
visitor for each sub-sequence of hovering labels.

Figure 3 depicts the average log loss (negative log of the
probability of the actually viewed exhibit), averaged over the
22 exhibits, as a function of sensor error. The figure compares
the performance obtained when the walking/hovering labels
are inferred (TLall) with that obtained when the labels are
given (TLAall). It is worth noting that the comparison was
done for the timestamps where the inferred and given hover-
ing labels overlap, but the exhibit probabilities used for the

was inferior to that obtained with the balanced data.
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Figure 4: Predictive performance of the four models against sensor error

comparison were calculated for all the inferred or given hov-
ering labels in each continuous sub-sequence of hovering la-
bels. This explains the (expected) slight drop in performance
for inferred hovering labels, since, as seen in the first exper-
iment, the inferred labels are sometimes wrong. Also, as ex-
pected, performance deteriorates as sensor error increases.

Predicting the next exhibit. This experiment determines
the effect of different assumptions regarding available infor-
mation on predictive accuracy. We consider our four models
from Table 1, whose information ranges from time-stamped
positional sensor logs (TLall) to sequences of viewed ex-
hibits (Exhall). In line with Schmidt et al. [2009], for all
four models, the next exhibit was predicted using the transi-
tion matrix learned from the 44 tours observed at the Marine
Life Exhibition (Section 3). For Exhall, we used the transi-
tion matrix directly (the transition probabilities for previously
visited exhibits were set to zero), while for the other models,
we used the Weighted approach described in Section 5.3.

Figures 4(a) and 4(b) show, respectively, the average top-
3 accuracy and average log loss for various levels of sen-
sor error for the four models described in Table 1 (the re-
sults are averaged over the 22 exhibits). For this experi-
ment, log loss is defined as the negative log of the probabil-
ity with which the exhibit actually viewed next is predicted,
and top-3 accuracy measures how often the exhibit actually
viewed next is one of the three exhibits predicted with the
highest probability. We employ top-3 rather than top-1 ac-
curacy because the top probabilities are often quite similar
due to the physical layout of the exhibition. As seen in the
figures, the higher the uncertainty about a visitor’s behaviour
and the higher the sensor error, the lower the accuracy and the
higher the log loss (statistically significant). Note that Exhall
is invariant to sensor noise, as all the information is assumed
given (Table 1). Interestingly, the differences in performance
between the three lower-information models (TLall, TLAall

and ExhprevTLAcurr) are relatively small, and their perfor-
mance profiles are quite flat up to ν = 1.5 metres, diverg-
ing slightly from there on. The creditable performance up to
ν = 1.5 metres means that one can expect acceptable predic-
tive performance from sensor-based systems.

7 Conclusions
This paper offered a realistic model of sensor-based infor-
mation, significantly extending the work of Schmidt et al.
[2009]. Our framework enables us to study the impact of dif-
ferent assumptions regarding sensor noise and available sen-
sor information on inferential performance regarding viewed
exhibits. The accuracy of these inferences in turn affects the
performance of user models, viz models of visitors’ interests
and of exhibits they are likely to visit. As expected, predic-
tive performance deteriorates for every experimental parame-
ter that is inferred (rather than given), and also as sensor error
increases. However, interestingly, performance remains quite
stable for sensor noise up to 1.5 metres, which is an encour-
aging result for real-world systems.

Our inferential and predictive models in combination sup-
port the generation of recommendations of exhibits that may
be of interest but are likely to be missed. Our models may
also be used to influence the strength of recommendations as
a function of the reliability of the information on which the
recommendations are based. An additional application of our
results is in guiding the layout of sensing devices in a mu-
seum, e. g., it may be advantageous to place more devices in
locations where the inferences are more uncertain.
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