
Using Partial Diagnoses for Sequential Model-Based Fault Localization∗

Kostyantyn Shchekotykhin1 and Thomas Schmitz2 and Dietmar Jannach2

1Alpen-Adria University Klagenfurt, Austria
e-mail: kostyantyn.shchekotykhin@aau.at

2TU Dortmund, Germany
e-mail: {firstname.lastname}@tu-dortmund.de

Abstract
In Model-Based Diagnosis settings, sequential di-
agnosis techniques can be applied in case the
number of possible explanations for an unex-
pected behavior of a system is too large to be
inspected manually. Such sequential approaches
rely on additional measurements to isolate the true
cause of the observed problem, usually in an it-
erative process. In order to speed up the typi-
cally computationally costly process of determin-
ing the next measurement point, we propose the
new concept of “partial” diagnoses, which can be
efficiently determined given a small number of
minimal conflicts. We evaluate our proposal by
comparing it with other domain-independent se-
quential diagnosis approaches on different bench-
mark problems. The results show that our new
method helps to significantly reduce the required
computation times.

1 Introduction
Model-Based Diagnosis (MBD) techniques aim at deter-
mining the possible causes of an unexpected behavior of an
observed system based on knowledge about the system’s ex-
pected behavior when its components work correctly. The
basic MBD principles were developed in the 1980s [Davis,
1984; Reiter, 1987; de Kleer and Williams, 1987] and have
since then been applied to various problem settings includ-
ing electronic circuits and software artifacts like knowledge
bases, logic programs, ontologies, or spreadsheets.

One challenge when applying MBD is that the number
of possible diagnoses can sometimes be large, making it in-
feasible for the user to check each diagnosis individually.
Consider, for example, the system c432 (scenario 0) of the
DX 2011 diagnosis competition benchmark. Even when
we limit the maximum cardinality of the diagnoses to five,
which is the cardinality of the true problem cause specified
in the scenario, already 6,944 different diagnoses exist.

Different approaches to solve this problem exist. One
option is to rank the diagnoses based on fault probabilities
hence increasing the chance that the user finds the true di-
agnosis earlier. Or, we can focus the diagnostic process it-
self on the most probable diagnoses [de Kleer, 1992] and
compute only a subset of all diagnoses, which comes at the
price of incompleteness. Finally, we can take additional

∗A shorter version of this paper was accepted for IJCAI ’16.

measurements to discriminate between fault causes, e.g.,
based on information-theoretic considerations [de Kleer and
Williams, 1987].

[Shchekotykhin et al., 2012] more recently compared two
different strategies for taking the next measurement in the
context of ontology debugging. These strategies are part of a
sequential diagnosis process in which the ontology engineer
is interactively queried about the correctness of certain ax-
ioms inferred by the faulty ontology. The answers are then
used to reduce the space of the remaining diagnoses. Com-
pared to heuristic or approximate approaches, the advantage
of their method is that it is complete, i.e., that the true error
will be identified at the end, which can be a requirement in
MBD-application domains like software debugging.

One limitation of the work of [Shchekotykhin et al.,
2012] is that for hard problem instances the computation
of a query can be computationally expensive. In their ap-
proach, they therefore first search for a few leading di-
agnoses given the current state of the sequential debug-
ging process and then determine the optimal query to the
user, i.e., the one that partitions this set of diagnoses in the
best possible way. However, for some real-world cases the
computation of even a few leading diagnoses is challeng-
ing [Shchekotykhin et al., 2014].

In our work we address the same problem setting and
aim to reduce the time of the sequential diagnosis sessions.
Specifically, the technical contribution of our work is the
notion of “partial” diagnoses, which can be efficiently com-
puted using a subset of the minimal conflicts. As usual, we
then determine the best possible partitioning of the partial
diagnoses, which however typically form a smaller search
space than in the original problem setting. Moreover, we
prove that our sequential method remains complete, i.e.,
it is guaranteed that the true problem cause – called pre-
ferred diagnosis – will be found. An experimental evalua-
tion on different benchmarks shows significant reductions
of the diagnosis time compared to previous works. Our
method furthermore is not dependent on the availability
of application-specific problem decomposition methods and
can therefore be applied to efficiently diagnose complex on-
tologies or electronic circuits without exploiting problem-
specific structural characteristics.

2 Sequential Diagnosis
Before we describe our technical approach in more detail,
we will informally review the main ideas of sequential (in-
teractive) diagnosis in the next section.

Calculate
diagnoses

Calculate
query

Ask query
to the user

Update
knowledge

Diagnosis
problem

Preferred
diagnosis

|diags|=1

else

Figure 1: A Sequential Diagnosis Process.

2.1 General Procedure Overview
In classical Model-Based Diagnosis settings, e.g., when we
diagnose an electronic circuit, we are given a formal de-
scription of the system under examination which lists the
components the system is made of, how these components
are connected, and how the components “behave” in case
they work normally. Given a set of known inputs to the
system, we can therefore derive which outputs we expect
if all components work correctly. If the outputs however
deviate from the expected ones, the goal is to find possible
explanations for the misbehavior of the system. In MBD ap-
proaches, these possible explanations are called diagnoses
and each diagnosis consists of a set of system components,
which would explain the observed behavior if we assume
them to work incorrectly.

If only one such diagnosis exists, one can solve the prob-
lem by exchanging the faulty components. If multiple di-
agnoses are returned by a diagnosis algorithm, an engineer
could for example manually inspect individual components
to rule out all but one of the diagnoses (which is then called
the target or preferred diagnosis).

In some application domains the number of such diag-
noses can unfortunately be very large, making a manual in-
spection of all possible explanations infeasible. Sequential
diagnosis techniques were proposed already in early works
on MBD [de Kleer and Williams, 1987] as one approach to
find the true cause of the problem in such situations. The
general idea is to ask the user to take additional measure-
ments and integrate the measurement results back into the
diagnostic reasoning process. Thereby, the set of possible
explanations is incrementally and iteratively reduced until
the preferred diagnosis is found.

Figure 1 shows an overview of a sequential diagnosis pro-
cess. Given a new diagnosis problem, we determine a set of
diagnoses for it. We can either compute all diagnoses or
stop after we have reached a certain number of diagnoses.
The latter strategy is advantageous for complex problems
for which determining all diagnoses is computationally de-
manding. Furthermore, specialized algorithms exist that can
find a small subset of diagnoses comparably fast.

If only one diagnosis is found, we are done and have iden-
tified the only possible explanation. Otherwise, the next step
is to compute the best possible measurement point. A good
measurement point, informally speaking, helps us to rule
out as many diagnoses as possible, independent of the user’s

answer. The system then asks the user to take this mea-
surement, e.g., to check if a certain component produces the
expected outputs for some specified inputs, and answer the
corresponding query with yes or no. One central problem
in this context is how we compute the optimal query for a
given set of diagnoses. In [de Kleer and Williams, 1987], an
information theoretic approach is proposed which was later
on used in [Shchekotykhin et al., 2012] and which we will
also use in our work.

In the next step of the process, we update our knowl-
edge about the system with the user’s answer. If the user
for example answered that the queried component definitely
works correctly, we can include that information in our sys-
tem description. With this updated knowledge, we re-run
the diagnosis algorithm, which will lead to a new set of di-
agnoses, e.g., because the components that were marked as
working correctly cannot appear in any diagnosis anymore.
This process is repeated until only one diagnosis remains.
The overall goal is to find the preferred diagnosis with the
smallest possible number of queries.1

The major challenge that we address in our work is that
some steps in the process can be computationally demand-
ing for complex problems. To make the search for the
optimal query computationally feasible, one can limit the
number of diagnoses that we consider in the information-
theoretic calculations to a certain small number to avoid
combinatorial explosion [Shchekotykhin et al., 2012].

However, even finding a small number of diagnoses can
be challenging. In our work we propose a new method that
helps us identify so-called “partial diagnoses” in each itera-
tion, which can be more efficiently computed than the “real”
diagnoses but still allow us to provably find the preferred di-
agnosis, without having to ask more queries to the user on
average. Our contribution in the overall process is marked
with a bordered circle in Figure 1.

Technically, our diagnosis calculations are based on the
concept of conflict sets2 where a conflict set is a set of com-
ponents which cannot be assumed to work correctly at the
same time given our observations. For example, if we have
a small electric circuit with two serially connected inverters,
the output should, of course, always be the same as the in-
put. If not, at least one of the two inverters must be faulty.
Therefore, these two gates represent a conflict.

Finding a diagnosis for a problem corresponds to deter-
mining the hitting set (set cover) of the conflict sets, which
means that a diagnosis has to “hit” (and thereby resolve)
each conflict. This problem is known to be NP-hard. Fur-
thermore, because each diagnosis has to resolve every con-
flict, almost all conflicts have to be known, even if we only
search for a small set of diagnoses. Computing the con-
flicts is in itself computationally costly. What we propose
in our work is to compute a subset of all conflicts, which
can for example be done with the recent MERGEXPLAIN
[Shchekotykhin et al., 2015] method and compute the hit-
ting sets only for these known conflicts, which can be done
much faster. We call these hitting sets partial diagnoses.
The main remaining problem is to make sure that the se-
quential diagnosis process will at the end still lead us to the
single preferred diagnosis, which we show through a formal
proof in Section 3.3.

1The oracle’s deliberation time to answer a query was assumed
to be independent of the query as done in other works.

2We use the terms “conflict set” and “conflict” interchangeably.

In the following section, we will discuss the process more
formally.

2.2 Formal Problem Characterization
The sequential diagnosis problem can be summarized as fol-
lows, using the basic definitions of [Reiter, 1987].
Definition 1 (Diagnosable system). Let COMPS be a set of
components represented as a finite set of constants, and SD
be a system description represented by a finite set of first-
order sentences, then (SD, COMPS) defines a diagnosable
system.

The pair (SD, COMPS) captures the normal behavior of
the system when we assume that all components work prop-
erly. The latter can be expressed by a set {¬AB(c) | c ∈
COMPS}, where the “abnormal” AB/1 predicate is used in
SD to model the expected behavior of the components. Con-
sequently, the set of sentences SD∪{¬AB(c) | c ∈ COMPS}
describing the normal behavior of the diagnosable system
must be consistent. A diagnosis problem arises when the
observed behavior of the system – represented as a finite
set of consistent first-order sentences OBS – differs from the
expected one.

Furthermore, information about a fault can be obtained by
means of measurements. Following the proposals of [Reiter,
1987; de Kleer and Williams, 1987; Felfernig et al., 2004]
we allow a user to provide positive and negative measure-
ments.
Definition 2 (Diagnosis). Let (SD, COMPS) be a diagnos-
able system and OBS be a set of observations such that
SD ∪ {¬AB(c) | c ∈ COMPS} is consistent and SD ∪
{¬AB(c) | c ∈ COMPS} ∪ OBS is inconsistent. In addi-
tion, let P and N be consistent sets of first-order sentences,
called positive and negative measurements resp., such that
∀n ∈ N : P 6|= n.

Then, a diagnosis for (SD, COMPS, OBS, P,N) is a
subset-minimal set ∆ ⊆ COMPS for which a knowledge base
• KB [∆] := SD ∪ OBS ∪ {AB(c) | c ∈ ∆} ∪ {¬AB(c) |
c ∈ COMPS \∆} is consistent,

• KB [∆] ∪ P is consistent, and

• ∀n ∈ N : KB [∆] ∪ P 6|= n.
Any diagnosis ∆ corresponds to a set of components that,

if assumed to be faulty, explain the observed misbehavior.
If there are more diagnoses than can be manually inspected,
additional measurements are taken in sequential MBD ap-
proaches to find the so-called preferred diagnosis ∆∗, which
corresponds to the set of actually faulty components.
Definition 3 (Preferred diagnosis). Let ∆∗ be a diagnosis
for (SD, COMPS, OBS, P,N). ∆∗ is the preferred diagnosis
iff ∆∗ = {c | c ∈ COMPS, c is faulty}.

In our approach – as in many others – the computation of
diagnoses is based on the concept of conflicts.
Definition 4 (Conflict). A set of components CS ⊆ COMPS
is a conflict for (SD, COMPS, OBS, P,N) iff (a) SD ∪ OBS ∪
P ∪ {¬AB(c) | c ∈ CS} is inconsistent or (b) ∃n ∈ N :
SD ∪ OBS ∪ P ∪ {¬AB(c) | c ∈ CS} |= n. A conflict
CS is minimal iff there is no CS ′ ⊂ CS such that CS ′ is a
conflict.

Informally speaking a conflict is a set of components that
cannot all work correctly at the same time given the obser-
vations and measurements. To resolve a minimal conflict

every diagnosis needs to comprise at least one of its compo-
nents. Given a method for computing minimal conflicts for
(SD, COMPS, OBS, P,N) such as QUICKXPLAIN [Junker,
2004] or PROGRESSION [Marques-Silva et al., 2013], al-
gorithms like HS-Tree [Reiter, 1987] find all diagnoses D
by enumerating all subset-minimal hitting sets of the set of
all minimal conflicts CS.

In sequential diagnosis settings, we are interested in the
true cause of the error. This preferred diagnosis is found
through additional information about the correctness of
components which is obtained through measurements.
Property 1. ∆∗ is the preferred diagnosis for
(SD, COMPS, OBS, P,N) iff ∆∗ is a diagnosis for
(SD, COMPS, OBS, P ∗, N∗), where P ∗ := {¬AB(c) |
c ∈ COMPS, c is correct} and N∗ := {¬AB(c) | c ∈
COMPS, c is faulty}.

According to Definition 2 only one diagnosis ex-
ists for (SD, COMPS, OBS, P ∗, N∗) and, consequently, by
Property 1 only one preferred diagnosis ∆∗ for any
(SD, COMPS, OBS, P,N). However, in many cases the
sets P and N do not comprise sufficient measurements
to uniquely determine ∆∗. In order to find ∆∗, sequen-
tial methods extend the sets P and N by asking a user or
some oracle to perform additional measurements allowing
the algorithm to rule out irrelevant diagnoses [de Kleer and
Williams, 1987; Shchekotykhin et al., 2012]. The problem
in this context is to determine “good” measurement points
and correspondingly construct a set of first-order sentences
Q, called query. An oracle must evaluate the correctness
of the sentences in Q, thereby providing the required addi-
tional measurements.

Given a set of diagnoses D for (SD, COMPS, OBS, P,N),
queries are designed such that they induce two non-empty
disjoint sets of diagnoses D1, D2 ⊆ D for which: (i)
If the elements of Q are stated to be correct by some
oracle – such as an MBD user or some automated sys-
tem3 – then all elements of D2 are not diagnoses for
(SD, COMPS, OBS, P ∪ Q,N). (ii) Otherwise, if Q is con-
sidered to be incorrect, all elements of D1 are not diagnoses
for (SD, COMPS, OBS, P,N ∪Q).
Definition 5 (Query). Let D be a set of diagnoses for
(SD, COMPS, OBS, P,N) and Q be a set of first-order sen-
tences. Then Q is a query iff the sets DP := {∆i ∈
D | KB [∆i] ∪ P |= Q} and DN := {∆j ∈ D |
KB [∆j] ∪ P ∪Q is inconsistent} are not empty.

A query Q induces a triple (DP , DN , D∅) of pairwise
disjoint subsets of the set D, where D∅ = D \ (DP ∪DN).

The overall goal is to use a series of queries to narrow
down the set of diagnoses D and to finally find the pre-
ferred diagnosis ∆∗. To select the best query we can use
different strategies such as split-in-half, entropy, or risk-
optimization [de Kleer and Williams, 1987; Rodler et al.,
2013].

3 Query Computation with Partial
Diagnoses

3.1 Algorithm Details
Algorithm 1 summarizes our approach, which in contrast
to previous works can operate on the basis of “partial” diag-
noses. In its main loop the algorithm repeatedly searches for

3We assume the oracle to always answer correctly.

Algorithm 1: FINDDIAGNOSIS

Input: A tuple I := (SD, COMPS, OBS, P,N), k:
number of minimal conflicts, n: number of
diagnoses

Output: A preferred diagnosis ∆∗

1 ∆∗ ← ∅;
2 while true do
3 C ← FINDCONFLICTS(I,∆∗, k);
4 if C = ∅ then return ∆∗;
5 ∆∗ ← ∆∗ ∪ GETPREFERREDPD(I, C, ∅, n);

function GETPREFERREDPD (I , C, PD , n)
6 PD ← PD ∪ FINDPDS(C, n− |PD |);
7 if |PD | = 1 then return δ∗ : δ∗ ∈ PD ;
8 Q← GETQUERY(I,PD);
9 (P ′, N ′)← ASKQUERY(Q);

10 I ← UPDATEMEASUREMENTS(I, P ′, N ′);
11 C ← UPDATECONFLICTS(I, C);
12 PD ← UPDATEPD(I,PD);
13 return GETPREFERREDPD(I, C,PD , n);

such preferred partial diagnoses and thereby incrementally
identifies the preferred diagnosis ∆∗. The idea of partial
diagnoses is that we do not compute all conflicts and diag-
noses for a given problem in each iteration, but only deter-
mine a subset of the minimal conflicts. Finding such a sub-
set of the existing minimal conflicts can be done e.g. with
the recently proposed MERGEXPLAIN method [Shcheko-
tykhin et al., 2015]. Then, we find a set of minimal hitting
sets for this subset of the conflicts, which correspond to par-
tial diagnoses.
Definition 6 (Partial Diagnosis). δ ⊆ COMPS is a partial
diagnosis for a set of minimal conflicts C ⊆ CS iff ∀CS ∈
C : δ ∩ CS 6= ∅ and there is no δ′ ⊂ δ such that δ′ is a
partial diagnosis.4

Algorithm 1 starts with the computation of at most k min-
imal conflicts C (FINDCONFLICTS) such that ∀CS ∈ C :
CS ∩ ∆∗ = ∅. In case the returned set is empty, i.e., the
provided system description is consistent with all observa-
tions and measurements, the algorithm returns ∆∗ = ∅ as
a diagnosis. Otherwise, it calls GETPREFERREDPD to in-
teractively find a preferred partial diagnosis for the minimal
conflicts C.

GETPREFERREDPD calls FINDPDS which returns at
most n leading partial diagnoses of C called PD . Depend-
ing on C, these partial diagnoses might have different prop-
erties. We consider two cases:

1. FINDCONFLICTS returned all minimal conflicts of the
original problem (C = CS). In this case all partial di-
agnoses computed by FINDPDS are diagnoses. Exist-
ing methods, e.g. [de Kleer and Williams, 1987], guar-
antee that GETPREFERREDPD finds the preferred di-
agnosis.

2. Only some of the minimal conflicts are returned in the
set C. Therefore, the partial diagnoses returned by
FINDPDS are not necessarily diagnoses.

If PD comprises only one partial diagnosis, then its
only element δ∗ is returned as the preferred partial diagno-

4Note that our definition of a partial diagnosis is different from
the one in [de Kleer et al., 1992].

sis. Otherwise, Algorithm 1 calls GETQUERY which com-
putes a query Q to discriminate between the elements of
PD . Inside GETQUERY, existing methods, e.g., entropy-
and probability-based ones, can be used to determine the
“best” query. These methods internally use the underly-
ing problem-specific reasoning engine to derive the conse-
quences of the different answers to possible queries. This
engine can for example be a Description Logic reasoner in
case of ontology debugging problems [Horridge et al., 2008;
Shchekotykhin et al., 2012] or a constraint solver when
the problem is to diagnose digital circuits [de Kleer and
Williams, 1987].

Next, Algorithm 1 asks an external oracle (ASKQUERY)
for a classification of the query sentences into positive
and negative ones (P ′ and N ′). If the oracle for exam-
ple answers that a queried component c works correctly,
¬AB(c) or any other set of logically equivalent first-order
sentences is added to P ′, and to N ′, otherwise. In gen-
eral, queries are not limited to atoms over the AB predi-
cate. An MBD system can for example use problem-specific
knowledge to convert Q into a logically equivalent set of
first-order sentences that are easier to answer for users.
We can, e.g., ask users about the specific observed out-
comes of a set of gates in a faulty circuit based on knowl-
edge about the expected behavior of the gates [Reiter, 1987;
de Kleer and Williams, 1987].

These sentences are then added to the corresponding sets
of positive P and negative N measurements of the updated
problem description I (UPDATEMEASUREMENTS). The up-
date requires the set C to be reviewed because some of its
elements might not be minimal conflicts given the new mea-
surements. UPDATECONFLICTS therefore internally imple-
ments a minimization method to ensure the minimality of
the conflicts in C. A trivial method would be to test for ev-
ery ci ∈ CS whether CS ′ = CS\{ci} is inconsistent. If this
is the case, CS is replaced by CS ′. Then, UPDATEPD re-
moves all elements of PD that are not partial diagnoses for
this updated set of minimal conflicts C. We do this because
these removed partial diagnoses comprise components that
are not elements of any updated minimal conflict anymore.
Finally, we recursively call GETPREFERREDPD to continue
to search.

When GETPREFERREDPD returns, its result is added to
∆∗. Algorithm 1 then continues with the outermost while
loop to check if additional conflicts exist given the updated
measurements in I and the partial preferred diagnosis ∆∗.

3.2 Illustrating Example
Consider the system 74L85, Scenario 10, from the DX
Competition 2011 Synthetic Track. There are three mini-
mal conflicts: CS ={{o1}, {o2, z2, z22}, {o2, o3, z7, z9,
z10, z11, z12, z13, z14, z17, z18, z19, z22, z27}}, which
are not known in advance. The number of minimal hitting
sets (diagnoses) for CS is 14, i.e., |D|=14. The preferred
diagnosis ∆∗ as specified in the benchmark is {o1, z22}.

The proposed interactive diagnosis process starts with the
computation of a subset C of the existing minimal conflicts
using MERGEXPLAIN, e.g., C={{o1}, {o2, z2, z22}} for
any k > 1. We then compute the minimal hitting sets of C,
leading to the partial diagnoses PD={{o1, o2}, {o1, z2},
{o1, z22}}, which are all subsets of diagnoses of the origi-
nal problem. Based on this outcome, we compute the query
Q that partitions the elements in PD in the best possible

way using, e.g., an entropy-based strategy. The goal is to re-
move as many non-preferred diagnoses as possible through
the additional measurement.

Let us assume that Q={¬AB(o2)}, i.e., we ask the user if
component o2 is working correctly. Since o2 is not actually
faulty, the user answers that o2 is correct, which means that
we can add o2 to P and remove it from the conflicts in C,
i.e., C={{o1}, {z2, z22}}. Next, we update PD and remove
all elements that are no partial diagnoses for the updated set
of C resulting in PD={{o1, z2}, {o1, z22}}. Within the
next recursive call of GETPREFERREDPD we first search for
new partial diagnoses, but as we have already found all par-
tial diagnoses for the conflicts inC, PD remains unchanged.
As PD still contains more than one element, the function
continues to search for the preferred partial diagnosis.

In a next step we compute {z22} as the optimal query Q.
Because the user correctly answers that z22 is not working
normally, we again update the measurements with the new
knowledge by adding z22 to N . This means that the pre-
ferred diagnosis must be a superset of {z22} and we can
remove all elements of PD that do not contain z22, result-
ing in PD={{o1, z22}}. Furthermore, we can ignore all
conflicts that contain z22 in the next steps. The next re-
cursive call of GETPREFERREDPD will directly return {o1,
z22} as the preferred partial diagnosis δ∗, because again no
additional partial diagnosis can be found.

Back in the main algorithm, within the while loop we try
to find new conflicts with the updated measurements in I
and the partial preferred diagnosis stored in ∆∗. As ∆∗ al-
ready resolves all conflicts of the original diagnosis prob-
lem, we do not have to search for the third conflict in CS
and can return ∆∗={o1, z22} as the preferred diagnosis. As
a result, in the example only two user interactions were re-
quired to narrow down the set of diagnoses to the true diag-
nosis.

3.3 Algorithm Properties
In this section we show that Algorithm 1 always terminates
and returns the preferred diagnosis ∆∗. First, we show that
on every iteration GETPREFERREDPD finds a query that
discriminates between the partial diagnoses in the set PD .
Proposition 1. Let C be an arbitrary set of minimal con-
flicts for (SD, COMPS, OBS, P,N) and PD be a set of partial
diagnoses for C, such that |PD | > 1. Then, a set of first-
order sentences Q exists which is a query (Definition 5) for
the set of diagnoses D = {∆ ∈ D | ∃δ ∈ PD : δ ⊆ ∆}.

Proof. Consider two arbitrary partial diagnoses δ′, δ′′ ∈
PD . By Definition 6, at least one minimal conflict set
CS ∈ C with |CS | > 1 exists for δ′ and δ′′ which is hit in
different ways. I.e., there exists at least one constant c ∈ CS
such that c ∈ δ′ and c /∈ δ′′. The component c can be used to
generate a query Q discriminating between the hitting sets.

Since c is an element of some minimal conflict, there ex-
ists at least one diagnosis ∆i such that c ∈ ∆i and, by
Definition 2, KB [∆i] comprises a sentence AB(c). Simi-
larly, there exists at least one diagnosis ∆j such that c /∈ ∆j

and KB [∆j] comprises ¬AB(c). Consequently, KB [∆i] |=
AB(c) and KB [∆j] |= ¬AB(c). The set Q = {AB(c)}
is a query, since DP = {∆i ∈ D | δ′ ⊆ ∆i} and
DN = {∆j ∈ D | δ′′ ⊆ ∆j} are not empty. Any other
partial diagnosis δ ∈ PD \ {δ′, δ′′} can then be classified
w.r.t. c into one of the sets DP (if c ⊆ δ) and DN (if
δ ∩ (CS \ c) 6= ∅).

Corollary 1. GETPREFERREDPD always terminates and
returns a preferred partial diagnosis δ∗.

Proof. By Proposition 1, a query exists for an arbitrary
set of partial diagnoses PD . Consider a minimal conflict
CS ∈ C with |CS | > 1 and a query Q = {AB(c)} where
c ∈ CS . If ASKQUERY returns P ′ such that ¬AB(c) ∈ P
after UPDATEMEASUREMENTS, then UPDATECONFLICTS
must replace CS with CS ′ such that c /∈ CS ′ by Definition 4
(a). Otherwise, ¬AB(c) ∈ N and UPDATECONFLICTS re-
places CS with CS ′ = {c}, since by Definition 4 (b) CS ′ is
a minimal conflict, i.e., SD∪OBS∪P∪{¬AB(c)} |= ¬AB(c).
Therefore, given any answer of an oracle at least one ele-
ment of PD must contain a component, which is not in any
of the updated minimal conflicts. Such partial diagnoses are
removed in line 12 and cannot be re-computed in further
iterations.

Consequently, GETPREFERREDPD terminates and re-
turns the only remaining partial diagnosis δ∗, which is con-
sistent with all positive and negative measurements.

Theorem 1. FINDDIAGNOSIS always terminates and re-
turns a preferred diagnosis ∆∗ given correct answers of an
oracle.

Proof. First we show that a set of components ∆∗ hits every
conflict in CS and then that ∆∗ is subset-minimal.

For any set of minimal conflicts C returned by FIND-
CONFLICTS the function GETPREFERREDPD always re-
turns the preferred partial diagnosis δ∗ for an updated
(SD, COMPS, OBS, P,N) that hits all conflicts in the set C,
where |C| > 0. The addition of δ∗ to ∆∗ (line 5) ensures
that none of the minimal conflicts C will be returned by
FINDCONFLICTS in the next iteration. That is, every iter-
ation of the main loop (line 2) increases the number of re-
solved conflicts in CS by at least 1. Since CS is finite and
FINDCONFLICTS returns only conflicts C ⊆ CS not hit by
∆∗, the Algorithm 1 terminates in at most |CS| iterations.

Furthermore, ∆∗ is subset-minimal since (a) ∆∗ com-
prises only components of some minimal conflict CS ∈ CS
(by definition of GETPREFERREDPD) and (b) every CS ∈
CS is hit by ∆∗ only once. The latter is due to fact that
GETPREFERREDPD returns only if δ∗ is the only diagnosis
for (SD, COMPS, OBS, P,N) and the updated set of minimal
conflicts C. Consequently, |CS | = 1 for every CS ∈ C.
Otherwise, there would be another partial diagnosis in PD
and GETPREFERREDPD would continue.

4 Experimental Evaluation
We evaluated our method on two sets of benchmark prob-
lems: (a) the ontologies of the OAEI Conference benchmark
as used in [Shchekotykhin et al., 2014], (b) the systems of
the DX Competition (DXC) 2011 Synthetic Track. As the
main performance measure we use the wall clock time to
find the preferred diagnosis. In addition, we report how
many queries (#Q) were required to find the preferred di-
agnosis and how many statements (#S) were queried.

We compared the following strategies:
1. INV-HS-DFS: The Inverse-HS-Tree method proposed

in [Shchekotykhin et al., 2014] which computes diag-
noses using Inverse QuickXplain and builds a search
tree in depth-first manner to find additional diagnoses.

2. INV-HS-BFS: A breadth-first variant of INV-HS-
DFS, similar to the approach of [Felfernig et al., 2012].

3. QXP-HS-DFS: A depth-first variant of Reiter’s
Hitting-Set-Tree algorithm [Reiter, 1987] that uses
QUICKXPLAIN to determine all conflicts required for
complete diagnoses.

4. MXP-PHS-DFS: Our proposed method which uses
MERGEXPLAIN to find a set of conflicts (FIND-
CONFLICTS) and a depth-first variant of Reiter’s
Hitting-Set-Tree algorithm [Reiter, 1987] to find par-
tial diagnoses based on the found conflicts (FINDPDS).

We compared our approach MXP-PHS-DFS to these other
three, because the performance of each of them highly de-
pends on the problem characteristics. Overall, we expect
the Inverse-HS-Tree methods to be faster than QXP-HS-
DFS for most of the tested problems. For all strategies,
we set the number of diagnoses n that are used to deter-
mine the optimal query to 9 as done in [Shchekotykhin et
al., 2014], and used the best-performing Entropy strategy
for query selection (GETQUERY). We did not set a limit
k on the number of conflicts to search for during a single
call of MERGEXPLAIN. For the ontology benchmark, the
failure probabilities used by the Entropy strategy are prede-
fined. For the DXC problems, we used random probabilities
and added a small bias for the actually faulty components
to simulate partial user knowledge about the faulty compo-
nents. The components were ordered according to the prob-
abilities, which is advantageous for the conflict detection
process for both tested algorithms.5 To simulate the oracle,
we implemented a software agent that knew the preferred
diagnosis in advance and answered all queries accordingly.
All tests were performed on a modern laptop computer. The
algorithms were implemented in Java. Choco was used as a
constraint solver and HermiT as Description Logic reasoner.

Problem Characteristics: Table 1 shows the character-
istics of the ontology benchmarks. This scenario is designed
to verify whether our method is applicable to problems for
which the consistency checking is beyond NP. Therefore,
we selected a set of hard cases for which the problem of
consistency checking is at least EXPTIME-complete.

Since no pre-defined preferred diagnoses exist for this
benchmark, we randomly selected one of the diagnoses as
the preferred one and repeated the process 100 times – each
time with a randomly chosen preferred diagnosis – to fac-
tor out random effects. In Table 1 we report the description
logic (DL) used to formulate the ontology, the number of
axioms (#A) in the knowledge base that were used as the
possibly faulty components in the diagnosis process, and the
average size of the preferred diagnoses (|∆∗|).

The characteristics of the DX Competition problems are
given in Table 2. For each system 20 scenarios are given,
each with a pre-specified injected fault consisting of several
components. These faults correspond to our preferred diag-
noses. Each of the 20 diagnosis scenarios was run 5 times
to factor out possible effects resulting from the random-
ized fault probabilities. Overall, we therefore performed
100 runs for each tested system.6 We encoded the scenar-
ios as CSP problems and report the number of constraints
(#C) and variables (#V) in Table 2. Furthermore, we list the
range of the sizes of the injected faults (#F) per system and

5Without these slightly higher probabilities for the actually
faulty components the absolute running times are higher for all
algorithms. The relative improvements remain very similar.

6The system c6288 could not be tested because the used Choco
solver did not return a result for any single instance of this system.

Ontology DL #A |∆∗|
ldoa-sof-ctool SHIN (D) 402 16.8
ldoa-cmt-ekaw SHIN (D) 338 22.4
mpso-ctool-ekaw SHIN (D) 458 17.3
opt-sof-ekaw SHIN (D) 467 22.9
opt-ctool-ekaw SHIN (D) 340 16.9
ldoa-sof-ekaw SHIN (D) 487 15.3
csa-sof-ekaw SHIN (D) 491 16.1
mpso-sof-ekaw SHIN (D) 491 22.3
ldoa-cmt-edas ALCOIN (D) 434 1.5
csa-sof-edas ALCHOIN (D) 860 1.0
csa-edas-iasted ALCOIN (D) 885 8.3
ldoa-ekaw-iasted SHIN (D) 629 9.7
mpso-edas-iasted ALCOIN (D) 1,152 16.4

Table 1: Characteristics of the ontology benchmarks.

System #C #V #F |∆∗|
74182 19 28 4 - 5 4 - 5
74L85 33 44 1 - 3 1 - 3
74283 36 45 2 - 4 2 - 4
74181 65 79 3 - 6 3 - 6
c432 160 196 2 - 5 2 - 5
c499 202 243 10 - 15 10 - 15
c880 383 443 20 - 25 20 - 25
c1355 546 587 12 - 17 12 - 17
c1908 880 913 22 - 63 9 - 34
c2670 1,193 1,502 79 - 107 4 - 23
c3540 1,669 1,719 9 - 14 9 - 14
c5315 2,307 2,485 79 - 155 19 - 64
c7552 3,515 3,720 57 - 113 13 - 40

Table 2: Characteristics of the DXC benchmarks.

the corresponding average size of the found preferred diag-
noses (|∆∗|). For some systems |∆∗| can be smaller than
the size of #F because some predefined injected faults were
non-minimal w.r.t. the observation specified by the scenario.

Results – Ontologies: The results for the ontologies are
shown in Table 3. In terms of the computation times MXP-
PHS-DFS leads in all test cases to a substantial speedup
compared to all other approaches. Of these other methods,
QXP-HS-DFS was the fastest one for the ontology prob-
lems. The runtime improvements of our approach compared
to QXP-HS-DFS range from 28% for one of the simplest
ontologies to 93% for the most complex one, for which the
calculation time could be reduced from 6 minutes to 23 sec-
onds. On average the improvements are as high as 80%.

Looking at the number of required interactions and
queried statements, our method is advantageous as well in
particular for the most complex problems, i.e., we ask fewer
queries which involve fewer statements. For some ontolo-
gies, however, using partial diagnoses requires the user to
answer more questions. The computation time to determine
these questions is significantly lower though.

Results – DXC Benchmarks: Table 4 shows the results
for the DXC problems. The results corroborate the obser-
vations made for the ontologies. Except for the tiny prob-
lems, which can be solved in fractions of a second in either
case, significant improvements in terms of the running times
could be achieved with our method compared to all other
approaches. For the DXC problems, INV-HS-DFS was the

Ontology INV-HS-DFS INV-HS-BFS QXP-HS-DFS MXP-PHS-DFS
Time #Q #S Time #Q #S Time #Q #S Time #Q #S

ldoa-conference-confof 21.6 7.4 12.1 18.4 7.8 12.0 15.7 6.9 11.7 4.2 8.7 12.6
ldoa-cmt-ekaw 32.0 12.2 14.3 26.5 10.8 17.4 32.5 9.8 16.5 4.0 9.6 14.8
mappso-confof-ekaw 32.5 10.6 13.2 21.3 4.9 10.8 28.2 5.3 10.0 2.9 7.1 10.9
optima-conference-ekaw 47.6 11.3 15.5 42.1 9.6 16.9 39.3 10.4 15.4 7.1 14.9 14.9
optima-confof-ekaw 13.1 6.9 8.2 12.9 8.7 9.2 10.2 4.9 7.3 2.5 7.0 7.0
ldoa-conference-ekaw 39.0 10.3 13.8 30.0 7.4 14.1 21.4 7.0 15.1 4.2 8.5 14.2
csa-conference-ekaw 44.6 9.6 16.2 47.1 9.6 18.3 41.5 10.0 17.5 4.5 14.4 15.7
mappso-conference-ekaw 88.1 14.7 22.0 66.4 10.5 23.3 62.4 12.0 23.2 6.1 10.7 19.0
ldoa-cmt-edas 0.9 1.0 1.0 0.9 1.0 1.0 1.5 1.0 1.0 0.4 1.0 1.0
csa-conference-edas 1.6 1.5 2.5 1.6 1.5 2.5 1.1 1.5 2.5 0.8 1.5 2.5
csa-edas-iasted 138 6.7 10.4 183 7.0 11.1 156 5.5 10.1 20.5 5.5 10.2
ldoa-ekaw-iasted 96.7 9.5 16.0 103 8.6 17.2 179 9.3 18.6 11.0 8.6 13.5
mappso-edas-iasted 963 12.2 18.8 1,611 10.1 20.9 341 8.2 19.5 23.4 8.9 16.6

Table 3: Results for ontologies. Time is given in seconds. #Q: avg. number of queries. #S: avg. number of queried statements.

System INV-HS-DFS INV-HS-BFS QXP-HS-DFS MXP-PHS-DFS
Time #Q #S Time #Q #S Time #Q #S Time #Q #S

74182 0.3 4.0 6.8 0.4 3.7 8.8 0.4 4.1 8.5 0.3 3.9 7.8
74L85 0.1 2.2 4.6 0.2 2.5 5.7 0.2 2.1 4.7 0.1 2.2 5.0
74283 0.3 4.1 8.4 0.6 5.1 14.4 0.4 4.1 9.4 0.2 4.2 11.4
74181 0.8 7.0 13.1 1.5 8.7 23.5 1.1 6.9 14.6 0.4 5.9 16.7
c432 1.6 9.1 18.0 2.8 10.3 29.9 5.4 9.0 18.8 0.5 6.2 18.5
c499 9.3 25.8 49.6 15.3 33.5 83.0 14.2 25.3 47.4 1.8 16.9 50.3
c880 36.5 36.4 70.7 42.9 39.0 150 38.6 32.4 85.1 9.1 28.0 84.0
c1355 71.9 79.8 167 135 96.0 246 173 65.2 139 12.7 31.5 116
c1908 146 106 230 171 90.9 218 1,705 108 225 46.4 44.7 163
c2670 31.8 7.7 15.7 29.6 6.8 16.4 87.9 8.0 17.2 7.2 7.0 18.8
c3540 1,081 247 458 1,398 182 476 - - - 239 41.6 159
c5315 1,528 87.9 181 1,601 76.3 193 - - - 217 44.4 143
c7552 - - - - - - - - - 2,446 72.5 283

Table 4: DXC results. Time is given in seconds. #Q: avg. number of used queries. #S: avg. number of queried statements.

fastest of the other approaches. The strongest relative im-
provement of our approach compared with this method is at
86%; on average, the performance improvement is at 58%.
For those systems where the computation times of INV-HS-
DFS were more than one second, the average improvement
is as high as 77%.

Some of the benchmark problems could not be solved by
some of the other approaches at all in 24 hours. QXP-HS-
DFS, which was the fastest of the other methods for the on-
tologies, could, for example, not find the preferred diagnosis
for systems that were more complex than the c2670 system.
The most complex system c7552 could not be diagnosed in
24 hours by any of the other approaches, while our new ap-
proach MXP-PHS-DFS finished in about 40 minutes.

5 Related Works
The idea of using measurements in MBD has its roots in
the landmark works of [Reiter, 1987] and [de Kleer and
Williams, 1987]. The latter additionally suggest a query se-
lection and generation method that was used and improved
in numerous subsequent works including [Feldman et al.,
2010; Pietersma et al., 2005; Gonzalez-Sanchez et al., 2011;
Siddiqi and Huang, 2011; Shchekotykhin et al., 2012].

To generate such queries, typical sequential algorithms
determine a set of diagnoses as a first step. In practical
situations, however, this often cannot be done efficiently

without additional knowledge. A number of sequential ap-
proaches were therefore proposed in the literature that rely
on additionally available information about the underlying
system. One option is to find a hierarchical abstraction
of the diagnosed system [Chittaro and Ranon, 2004; Feld-
man and Van Gemund, 2006; Siddiqi and Huang, 2011] and
then use specific methods to locate the possibly faulty com-
ponents [Stumptner and Wotawa, 2001; Darwiche, 2003;
Marques-Silva et al., 2015; Metodi et al., 2014]. Al-
ternatively, in cases where many test cases are available,
spectrum-based techniques can be applied to assess whether
a component is faulty [Gonzalez-Sanchez et al., 2011].

In contrast to these approaches, our method is domain-
independent, does not depend on the presence of multiple
test cases, and uses a problem decomposition approach in-
side MERGEXPLAIN that is not dependent on the existence
of structural information about the system. Of course, if the
structure is known, the performance of MERGEXPLAIN can
be further increased by adapting the splitting strategy.

In more recent works, several researchers approached
the diagnosis task by solving the dual problem. Different
domain-independent methods were proposed for example in
[Felfernig et al., 2012; Stern et al., 2012; Shchekotykhin et
al., 2014], which calculate diagnoses “directly”, i.e., with-
out computing conflict sets. This property allows dual al-
gorithms (like INV-HS-DFS) to find a diagnosis in a poly-

nomial number of calls to a theorem prover. However, our
results show that our method can outperform dual methods
despite the need of computing minimal conflicts.

6 Conclusion
Interactive diagnosis approaches can be particularly useful
in cases when many diagnoses exist. In our work we pre-
sented a novel approach to significantly speed up the pro-
cess of determining the next best question to ask to the user
by introducing the concept of partial diagnoses.

As a part of our future work we will investigate the
value of incorporating additional information, e.g., the sys-
tem’s structure or prior fault probabilities of the compo-
nents, when determining the set of leading diagnoses and
will explore if such information can help us to generate more
informative queries.

Acknowledgements
This work was supported by the Carinthian Science Fund
(contract KWF-3520/26767/38701), the Austrian Science
Fund (contract I 2144 N-15) and the German Research
Foundation (contract JA 2095/4-1).

References
[Chittaro and Ranon, 2004] Luca Chittaro and Roberto Ra-

non. Hierarchical model-based diagnosis based on struc-
tural abstraction. Artificial Intelligence, 155(1):147–182,
2004.

[Darwiche, 2003] Adnan Darwiche. A differential ap-
proach to inference in Bayesian networks. Journal of the
ACM, 50(3):280–305, 2003.

[Davis, 1984] Randall Davis. Diagnostic reasoning based
on structure and behavior. Artificial Intelligence, 24(1–
3):347–410, 1984.

[de Kleer and Williams, 1987] Johan de Kleer and Brian C
Williams. Diagnosing multiple faults. Artificial Intelli-
gence, 32(1):97–130, 1987.

[de Kleer et al., 1992] Johan de Kleer, Alan K Mackworth,
and Raymond Reiter. Characterizing Diagnoses and Sys-
tems. Artificial Intelligence, 56(2-3):197–222, 1992.

[de Kleer, 1992] Johan de Kleer. Readings in model-based
diagnosis. chapter Focusing on Probable Diagnosis,
pages 131–137. 1992.

[Feldman and Van Gemund, 2006] Alexander Feldman
and Arjan Van Gemund. A two-step hierarchical algo-
rithm for model-based diagnosis. In AAAI ’06, pages
827–833, 2006.

[Feldman et al., 2010] Alexander Feldman, Gregory
Provan, and Arjan Van Gemund. A model-based active
testing approach to sequential diagnosis. Journal of
Artificial Intelligence Research, 39:301, 2010.

[Felfernig et al., 2004] Alexander Felfernig, Gerhard
Friedrich, Dietmar Jannach, and Markus Stumptner.
Consistency-based diagnosis of configuration knowledge
bases. Artificial Intelligence, 152(2):213–234, 2004.

[Felfernig et al., 2012] Alexander Felfernig, Monika Schu-
bert, and Christoph Zehentner. An efficient diagnosis al-
gorithm for inconsistent constraint sets. Artificial Intel-
ligence for Engineering Design, Analysis and Manufac-
turing, 26(1):53–62, 2 2012.

[Gonzalez-Sanchez et al., 2011] Alberto Gonzalez-
Sanchez, Rui Abreu, Hans-Gerhard Gross, and Ar-
jan J.C. van Gemund. Spectrum-based sequential
diagnosis. In AAAI ’11, 2011.

[Horridge et al., 2008] Matthew Horridge, Bijan Parsia,
and Ulrike Sattler. Laconic and Precise Justifications in
OWL. In ISWC ’08, pages 323–338, 2008.

[Junker, 2004] Ulrich Junker. QUICKXPLAIN: Preferred
Explanations and Relaxations for Over-Constrained
Problems. In AAAI ’04, pages 167–172, 2004.

[Marques-Silva et al., 2013] Joao Marques-Silva, Mikoláš
Janota, and Anton Belov. Minimal Sets over Monotone
Predicates in Boolean Formulae. In CAV ’13, pages 592–
607, 2013.

[Marques-Silva et al., 2015] João Marques-Silva, Mikoláš
Janota, Alexey Ignatiev, and António Morgado. Efficient
Model Based Diagnosis with Maximum Satisfiability. In
IJCAI ’15, pages 1966–1972, 2015.

[Metodi et al., 2014] Amit Metodi, Roni Stern, Meir
Kalech, and Michael Codish. A novel sat-based approach
to model based diagnosis. Journal of Artificial Intelli-
gence Research, 51:377–411, 2014.

[Pietersma et al., 2005] Jurryt Pietersma, Arjan J.C. van
Gemund, and André Bos. A model-based approach to se-
quential fault diagnosis. In AUTOTESTCON ’05, pages
621–627, 2005.

[Reiter, 1987] Raymond Reiter. A Theory of Diagnosis
from First Principles. Artificial Intelligence, 32(1):57–
95, 1987.

[Rodler et al., 2013] Patrick Rodler, Kostyantyn Shcheko-
tykhin, Philipp Fleiss, and Gerhard Friedrich. RIO: min-
imizing user interaction in ontology debugging. In RR
’13, pages 153–167, 2013.

[Shchekotykhin et al., 2012] Kostyantyn Shchekotykhin,
Gerhard Friedrich, Philipp Fleiss, and Patrick Rodler.
Interactive ontology debugging: Two query strate-
gies for efficient fault localization. J. Web Semant.,
12-13:88–103, 2012.

[Shchekotykhin et al., 2014] Kostyantyn Shchekotykhin,
Gerhard Friedrich, Patrick Rodler, and Philipp Fleiss.
Sequential diagnosis of high cardinality faults in
knowledge-bases by direct diagnosis generation. In
ECAI ’14, pages 813–818, 2014.

[Shchekotykhin et al., 2015] Kostyantyn Shchekotykhin,
Dietmar Jannach, and Thomas Schmitz. MergeXplain:
Fast Computation of Multiple Conflicts for Diagnosis.
In IJCAI ’15, pages 3221–3228, 2015.

[Siddiqi and Huang, 2011] Sajjad Siddiqi and Jinbo
Huang. Sequential diagnosis by abstraction. Journal of
Artificial Intelligence Research, 2011.

[Stern et al., 2012] Roni Stern, Meir Kalech, Alexander
Feldman, and Gregory Provan. Exploring the Duality in
Conflict-Directed Model-Based Diagnosis. In AAAI ’12,
pages 828–834, 2012.

[Stumptner and Wotawa, 2001] Markus Stumptner and
Franz Wotawa. Diagnosing Tree-Structured Systems.
Artificial Intelligence, 127(1):1–29, 2001.

