Online Dating Recommender Systems: The Split-complex Number Approach

Jérôme Kunegis, Gerd Gröner, Thomas Gottron
University of Koblenz–Landau

RSWeb'12

September 9, 2012
Friend Recommendation

Find friends from different parts of your life
Use the checkboxes below to discover people you know from your hometown, school, employer and more.

Hometown
- [] Berlin, Germany
- [] Enter another city

Current City
- [] Koblenz, Germany
- [] Enter another city

High School
- [] Französisches Gymnasium
- [] Enter another high school

Mutual Friend
- [] Steffen Staab
- [] Matthew Rowe
- [] Gabi Mähias
- [] Enter another name

College or University
- [] Berlin Institute of Technology

Andreas Mu
- University of Georgia
- Bernhard Szudra and 3 other mutual friends

Nusrat Jahan Ritu

Frank Bohdanowicz
- Anja Hissnauer and 6 other mutual friends

Thombo Hau'i
- Stephan Spiegel and 7 other mutual friends

+1 Add Friend

Friend/Foe Recommendation

Your Relationship with eldavojohn (898314)

Friends of Friends | Foes of Friends

- Friend
- Neutral
- Foe

Change this?

Yup, I'm positive

Friend

Fan

Foe

Freak
Dating Recommendation

DISSIMILAR

LIKE

SIMILAR

DISLIKE
Triangle Closing

Friend \times \text{Friend} = \text{Friend}
"The Enemy of My Enemy"

\[\text{Friend} = +1 \]
\[\text{Foe} = -1 \]
\[+1 \times +1 = +1 \]
\[-1 \times +1 = -1 \]
\[-1 \times -1 = +1 \]

(Kunegis et al. 1999)
Dating Recommendation

Like × Like = Similar

Similar × Similar = Similar

Similar × Like = Like
Split-complex Numbers

\[z = a + bj \]

\[j \times j = +1 \]

\[(a + bj) + (c + dj) = (a + c) + (b + d)j \]
\[(a + bj) \times (c + dj) = (ac + bd) + (ad + bc)j \]

Not a field: \((1 + j)(1 - j) = 0 \)

Introduced as real tessarines (Cockle 1848)
Online Dating Recommender Systems: The Split-complex Number Approach
Adjacency Matrix

\[
A_{uv} = 1 \text{ when } u \text{ and } v \text{ are connected} \\
A_{uv} = 0 \text{ when } u \text{ and } v \text{ are not connected}
\]
Recommendation Functions

\[\exp(A) = I + A + \frac{1}{2} A^2 + \frac{1}{6} A^3 + \ldots \]

\[\begin{array}{c|cccccccc}
 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
2 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
3 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\
4 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\
5 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\
6 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
7 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
\end{array} \]

\[\begin{array}{cccccccc}
 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
1 & 1.66 & 1.72 & 0.93 & 0.98 & 0.28 & 0.06 & 0.01 \\
2 & 1.72 & 3.57 & 2.70 & 2.93 & 1.04 & 0.29 & 0.06 \\
3 & 0.93 & 2.70 & 2.86 & 2.71 & 0.99 & 0.28 & 0.06 \\
4 & 0.98 & 2.93 & 2.71 & 3.63 & 1.95 & 0.76 & 0.22 \\
5 & 0.28 & 1.04 & 0.99 & 1.95 & 2.35 & 1.59 & 0.64 \\
6 & 0.06 & 0.29 & 0.28 & 0.76 & 1.59 & 2.23 & 1.38 \\
7 & 0.01 & 0.06 & 0.06 & 0.22 & 0.64 & 1.38 & 1.59 \\
\end{array} \]
Split-complex Adjacency Matrix

\[B_{uv} = +j \text{ when } u \text{ likes } v \]
\[B_{uv} = -j \text{ when } u \text{ dislikes } v \]
\[B_{uv} = 0 \text{ when } u \text{ and } v \text{ are not connected} \]

\[B = jA \]
Split-complex Numbers as 2×2 Matrices

Split-complex numbers can be represented as 2×2 matrices:

\[
a + bj \equiv \begin{pmatrix} a & b \\ b & a \end{pmatrix}
\]

Addition

\[
\begin{pmatrix} a & b \\ b & a \end{pmatrix} + \begin{pmatrix} c & d \\ d & c \end{pmatrix} = \begin{pmatrix} a+c & b+d \\ b+d & a+c \end{pmatrix}
\]

Multiplication

\[
\begin{pmatrix} a & b \\ b & a \end{pmatrix} \times \begin{pmatrix} c & d \\ d & c \end{pmatrix} = \begin{pmatrix} ac+bd & ad+bc \\ ad+bc & ac+bd \end{pmatrix}
\]
Computation

\[B = A^T \]

\[\exp(B) = \begin{bmatrix} \cosh(A) & \sinh(A) \\ \sinh(A) & \cosh(A) \end{bmatrix} \]
Evaluation

(“Do you like me”) – Czech dating site

<table>
<thead>
<tr>
<th>Gender</th>
<th>Count</th>
<th>Unknown</th>
<th>Rating counts</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Male</td>
<td>Female</td>
</tr>
<tr>
<td>Unknown</td>
<td>83,164</td>
<td>366,180</td>
<td>891,550</td>
<td>445,115</td>
</tr>
<tr>
<td>Male</td>
<td>76,441</td>
<td>937,684</td>
<td>682,710</td>
<td>3,232,064</td>
</tr>
<tr>
<td>Female</td>
<td>61,365</td>
<td>2,460,765</td>
<td>7,099,688</td>
<td>1,243,590</td>
</tr>
<tr>
<td>All</td>
<td>220,970</td>
<td>3,764,629</td>
<td>8,673,948</td>
<td>4,920,769</td>
</tr>
</tbody>
</table>
Evaluation

![Graph showing evaluation results for different methods compared to real and split-complex numbers. The x-axis represents different methods: Poly, RR, Exp/Sinh, New, and Extr. The y-axis represents average precision ranging from 0.72 to 0.84.]
Thank You

Jérôme Kunegis

Thanks go to Václav Petříček for providing the Libimseti.cz dataset. The research leading to these results has received funding from the European Community's Seventh Framework Programme under grant agreement n° 257859, ROBUST.

konect.uni-koblenz.de/networks/libimseti
References

