Recommending based on rating frequencies – Accurate enough?

Fatih Gedikli and <u>Dietmar Jannach</u>
TU Dortmund, Germany
dietmar.jannach@tu-dortmund.de

Background

- Collaborative filtering recommender systems
 - Recommendation of items based on community behavior
 - Assume that users who had similar tastes in the past, will have similar tastes in the future

Customers Who Bought This Item Also Bought

The Terrible Privacy of Maxwell Sim by Jonathan Coe £11.39

Burley Cross Postbox Theft by Nicola Barker ********(29) £11.61

Our Tragic Universe by Scarlett Thomas

CF algorithms

- Given
 - Users and item rating matrix
- Predict
 - Ratings for unseen items for active user
- Various algorithms proposed
 - Neighborhood-based approaches
 - Association rule mining
 - Probabilistic methods
 - Matrix factorization

– ...

Effectiveness of recommendations

- "Accuracy" the most common metric
 - Offline experimentation
 - MAE, RMSE
 - Measures deviation of predicted ratings from real (withheld) ratings
- Others are possible
 - Coverage, diversity, serendipity (novelty)
 - Navigation and purchase behavior
- Currently increased interest

Other desirable features of an RS

- Implementation complexity
 - Easy to implement?
 - Availability of implementations in different languages?
- Offline-computation costs
 - Running times for large-scale systems?
 - Can the models be updated on the fly?
 - Parameter optimization costs?
- Efficiency at query time
- Explanations
- Accuracy (see next slide)

Industry wisdom (Francisco Martin, Strands)

More industry wisdom

Proposed method: RF-Rec

- Use a very simple prediction function
- Given:
 - For each possible rating value r, the number of times the active user U has used it.
 - For each possible rating value r, the number of times the target item has received this value from the community

• Predict:

The rating value that appeared most often for this user/item combination

More formally

$$\begin{split} pred(u,i) &= \underset{r \in possibleRatings}{\arg\max} \\ & \left(\left(freqUser(u,r) + 1 + \mathbbm{1}_{avg-user}(u,r) \right) * \right. \\ & \left. \left(freqItem(i,r) + 1 + \mathbbm{1}_{avg-item}(i,r) \right) \right) \end{split}$$

- The indicator function returns 1
 - if the current rating is identical to the average rating
 - thus, serves as a tie-breaker and gives a light bias toward average ratings
- The 1 in the middle
 - Makes sure that factors are not zeroed out
 - In case a rating value was not used / given

Example

	I1	I2	I3	I4	I5	Average
Alice	1	1	?	5	4	2.75
U1	2		5	5	5	4.25
U2			1	1		1.00
U3		5	1	1	2	2.25
Average	1.50	3.00	2.33	3.00	3.67	_

Rating value 1: (2+1+0)*(2+1+0) = 9

Rating value 2: (0+1+0)*(0+1+1) = 2

• • •

Rating value 5: (1+1+0)*(1+1+0) = 4

What is different?

	I1	I2	13	I4	15	Average
Alice	1	1	?	5	4	2.75
U1	2		5	5	5	4.25
U2			1	1		1.00
U3		5	1	1	2	2.25
Average	1.50	3.00	2.33	3.00	3.67	

- Both the ratings for I3 and the ones given by Alice are extreme
- Other approaches (kNN, SlopeOne) take averages
 - High variance in data can lead to decreased accuracy (Herlocker et al., 2000)
 - RF-Rec will also recommend extreme ratings
- Coverage:
 - Prediction possible if one item rating or one user rating is available.

Experimental evaluation

- Three different data sets
 - MovieLens
 - 100.000 ratings from around 1.000 users on about 1.700 movies, sparsity 0,9369
 - Yahoo!Movies
 - 211.000 ratings by 7.600 users on 12.000 movies, sparsity 0,9976
 - BookCrossing (subset)
 - 100.000 ratings by 30.000 users on 37.400 books, sparsity
 0,9999
- Variation of density level
 - From 10% to 90% (Train / test ratio)

Experimental evaluation

- Evaluation metric
 - Mean Absolute Error
- Evaluated algorithms
 - User-based kNN with Pearson similarity and default voting; neighborhood size 30
 - Item-based kNN (Pearson correlation)
 - SlopeOne
 - BiasFromMean (Non-personalized)
 - RPA (Recursive prediction algorithm; Zhang & Pu, 2007)

Measurements

Measurements - BookCrossing

Observations

- Accuracy comparable or better to other methods
 - Except for costly RPA method for full MovieLens
- Accuracy even better for sparse data sets and low density levels
 - Item-based method: MAE 1.18 on BookCrossing
- Coverage 100%
 - MovieLens + kNN: Coverage slowly increases from 65% to 95%

Discussion of algorithm

- Implementation complexity is trivial
- Easy update when new data comes in
- Constant, minimal memory requirements
- No parameter optimization
- Generation of predictions very fast
- "Model-building" times
 - 500ms for the 1 million MovieLens dataset
 - 6 minutes for item-item (Mahout)
- Explanations?

Summary

- Accuracy of RF-Rec on a par with other (basic) algorithms
- Particularly good results for sparse data sets
 - Accuracy, coverage
- Result could help further re-focus RS research beyond accuracy
 - User interaction issues, marketing wisdom, psychology ...

Future work

- Further evaluation
 - Other data sets
 - NetFlix
 - Other domains (tourism)
 - More sophisticated algorithms
 - Koren, 2009
 - Matrix factorization approaches
 - Variations of metrics
- Implementation of algorithm for different platforms and programming languages

Discussion

Better quality metrics for recommender systems

- Repeatability of research in RS
 - Open source implementation provided by authors
 - Not common in the field
 - Evaluation scenario and parameter settings not described precisely in many papers