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INntroduction

“Problem we are addressing:

» Contextual information access

° Context-sensitivity is the key to lifting the burden of
information access from users

» User context is an essential ingredient in building
more intelligent personalized applications

°* Web search
°* Navigation Support
°* Recommender systems

» Allan et al. 2004 - “Contextual Retrieval: Combine search
technologies and knowledge about query and user context
Into a single framework in order to provide the most
appropriate answer for a user’s information needs”




INntroduction

<+ Solution:

» Develop a user modeling framework in which the user’s
“information access context” is learned

» Integrate the critical elements that make up the user’s
iInformation context:

®* Short-term user interests or information need
°* Semantic knowledge about the domain
° Long-term user profiles that reveal trends in user preferences

» Translate context representation into a form that can be
used to support different information access activities

» Ontological user profiles
°* Annotated instances of a reference domain ontology




Information Access Context

<+ Web Search Scenario

Query: “Madonna and Child”

? PeopleNews

Madonna Ready for Another
Baby?

Wednesday Nov 24, 2004 1:55pm EST

By Todd Gold
= Three months after finishing
her Re-Invention Tour,
Madonna is currently enjoying
quiet time with her family in
London, she’s just published

Need to “learn” user’s profile and to
disambiguate the domain of discourse:
* User is an art historian?
* User is a pop music fan?

her fourth book for young
readers, The Adventures of
| Abdi-and, at46, she tells
i PEOPLE she wouldn't mind
getting pregnant again.

She's not making any definite
plans, butthe pop icon says:
“I'm going to have fun with my
husband and see what
happens.”




Information Access Context

<+ Recommendation Scenario

» Steve’s purchases on Amazon:
°* mystery-detective fiction “Da Vinci Code” (for himself)
* “Python Programming” (for work)
° “Green Eggs and Ham” (for his daughter)

» How should we represent Steve’s interest in books?

» System needs to know the difference between children
books and computer books

» What should be recommended if Steve is reading reviews
for a book on Perl Scripting?




Outline

< Ontological User Profile as the Context Model

< Updating User Context by Spreading
Activation

< Ontological Approach to Collaborative
Recommendation

< Experimental Evaluation




Domain Ontology

< Represents concepts and relationships in a particular
domain of interest

» Hierarchical concept structure and instances within the
knowledge base

» Rather than being associated with single atomic entities like
Individual books, users' choices and preferences are associated
with relevant concepts in the ontology

“» Reference Ontology

» An existing domain ontology on which all ontological profiles are
based

» Underlying ontology can be modularized to allow for adoption to
a variety of application domains

» E.g., Amazon’s Book Taxonomy for a collaborative book
recommender system

Dissertation pages: 48-49



Ontological User Profiles

< Ontological user profile is an instance of the reference
ontology

» Each concept is annotated with an interest score
< Whenever the system acquires new evidence about

user interests, such as page views or explicit ratings,
the user profile is updated with new interest scores

“ Framework is designed to maintain and update the
ontological user profiles based on the user behavior
and ongoing interaction

<2+ Profile Normalization

» Relative importance of concepts in the profile reflect the
changing interests and varied information contexts of the user

Dissertation pages: 49-50



Augmenting Collaborative Recommendation

< Standard User-Based Collaborative Filtering

> Operates by selecting the k most similar users to the
target user based on ratings on individual items

» Formulates a prediction by combining the preferences of
these neighbors

< Collaborative Filtering with Ontological
Profiles

» User similarities are computed based on their interest
scores across ontology concepts, instead of their ratings
on individual items

®* This helps broaden the recommendations and alleviate typical
problems with CF: “cold start,” “diversity,” “serendipity”

» Additional filtering is performed by selecting only
neighbors that have significant interest in the concept of
the “target item”

® This helps in identifying the relevant “information access
context” and improves accuracy




Updating User Context by Spreading
Activation

< Interest score
» Indicates the importance of a concept for the user
» Gets incremented or decremented based on the user’s
behavior over many interactions
< Spreading Activation
» Ontological User Profile is treated as the semantic network
» Interest scores updated based on activation values

» Initial set of concepts is assigned an initial activation value
based on similarity to user’s short-term interests

» Activate other concepts based on a set of weighted
relations

°* Relationship between adjacent concepts is determined based
on the degree of overlap

» Obtain a set of concepts and their respective activations

10



Spreading Activation Algorithm

< Input
> Ontological user profile with interest scores
> An item the user is interested in (e.g. book)
% Spreading Activation
» Initial set of concepts are the concepts the item belongs to
» Each concept is assigned an initial activation value
* 1S(C))
° Priority queue in non-increasing order of activation values
> Concept with highest activation
°* Remove from queue
®* Propagate activation to neighbors
— activation value * activation weight
°* Add activated concepts to the priority queue
°* Reorder the queue
> Add resulting activation values to existing interest scores for the concepts
» Normalize interest scores
* Increment or decrement

Dissertation pages: 102-104 11



Profile Updating lllustrated
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Ontology-Based Collaborative Recommendation

< Semantic Neighborhood Generation

» Compare the ontological user profiles for each user to form
semantic neighborhoods

» Euclidean Distance

distance,,= [> (1S(C,,)-IS(C,,))

jeC

°* C - set of all concepts in the reference ontology
* 1S(C; ) — interest score for concept C; for target user u
* 1S(C;,) — interest score for concept C; for target user v

» Normalize the distance

» Calculate similarity based on the inverse of the normalized
distance

Dissertation pages: 104-105 13



Ontology-Based Collaborative Recommendation

% Prediction Computation
» Compute the prediction for an item i for target user u
°* Select most similar k neighbors
°* Concept-based filtering on the neighbors

» Variation of Resnick’s standard prediction formula

ZSimu,v *(rv,i _Tv)

= eV
pu,i = ru + ; -
> sim,,

veV

°* We use concept-based mean ratings for the target user and
specific neighbors

° V — set of k similar users

Dissertation pages: 105 14



Experimental Evaluation

< Questions

» Can the semantic evidence provided by the
ontological user profiles be utilized to meet the
user’s recommendations needs?

° Prediction Accuracy

°* Coverage

° Cold-start performance

°* Personalization and diversity

» User profile convergence and accuracy

15



Experimental Setting

% Reference Ontology
» Amazon’s Book Taxonomy
°* ISBN — unique identifier for each book
° Category, title, URL, and editorial reviews

°* 4,093 concepts and 75,646 distinct books

/7

% Ontological user profile: an annotated instance of
Amazon’s Hierarchy

» Concepts are annotated with interest scores (initially set to 1)

» User’s short-term interest (e.g. books of interest) is matched
against concepts in the hierarchy

» Spreading Activation is used to incrementally update the
Interest scores

\/

< Ewvaluation using the book ratings collected by Ziegler
» 4-week crawl from the BookCrossing community

Dissertation pages: 100-101 16



Experimental Evaluation

< Experimental Data Set

» 72,582 book ratings belonging to users with 20
or more ratings

» Training data utilized for spreading activation
» Test data used for predicting ratings
» K-fold cross validation, k = 5

Dissertation pages: 105-106 17



Experimental Evaluation - Metrics

“ Prediction Accuracy
» Mean Absolute Error (MAE)

< Top-N Recommendation Effectiveness
> Hit Ratio

L)

*» Recommendation Diversity

» Personalization

°* measures the uniqueness of different users'
recommendation lists based on inter-list distance

»  Surprisal

°® measures the unexpectedness of a recommended item
relative to its overall popularity

Dissertation pages: 106-107 18



Experimental Results

<+ Mean Absolute Error, k=200

»  ANOVA significance test with 99% confidence interval, p-Value < 0.01
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Experimental Results

% Cold-start Problem
> Item cannot be recommended until it has been rated by a
substantial number of users

» Computed MAE for items with 20 or fewer ratings to
demonstrate improved cold-start performance
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Experimental Results

< Top-N Recommendation
» Improved Hit Ratio

°* Computed by determining whether a hit exists within the top-N

items in the recommendation list

Hit Ratio

[ —&— Standard kNN —e— Ontological khN|
Standard kNN vs. Ontological kNN

e MH

0.18

0.15 A

o1 M

0.09 -

0.06 -

0.03 A

0.00

1 2 3 4 5 6 7 8 9 10111213 14 15 16 17 18 19 20
Top-N Items

Dissertation pages: 111-112

21



Experimental Results

% Recommendation Diversity

» Personalization

°* uniqueness of different users’ recommendation lists based on inter-

list distance

® @; - number of common items in the
top N recommendations for two given
users i and j

d; (N) =1—

q”(N)
N

» Surprisal
® unexpectedness of a recommended item relative to its overall
popularity
° |—givenitem in a user’s

recommendation list

° frequency,— number of overall positive
ratings for i divided by the total number
of users

= log,(

1

** frequency,

Dissertation pages: 107
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Experimental Results

< Recommendation Diversity
» Improved Personalization
» Improved Surprisal

Algorithm Personalization, d(20) Surprisal/Novelty. I(20)
Standard kNN 0.922 6.544

Ontological kNN 0.975 7.286

ANOVA p-value 1.9417E-276 4.9221E-181

Dissertation pages: 113



Conclusions and Outlook

 Framework for contextualized recommendation
using ontologies
» Semantic knowledge embedded in an ontology combined with

long term user profiles can be effectively used to improve
collaborative recommendation

» Integration of ontological profiles help identify user’s relevant
iInformation access context, thus improving accuracy

» The semantic context also broadens the set of recommended
items, thus improving the diversity and serendipity of
recommendations

< Future work
» Long-term stability and convergence patterns of profiles
» Additional metrics to measure the “quality” of recommendations
> Experiments with additional data sets
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Questions
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