

Proceedings of the ACM RecSys'09 Workshop on

Recommender Systems & the Social
Web

EDITORS

Dietmar Jannach, Werner Geyer, Jill Freyne, Sarabjot Singh Anand,
Casey Dugan, Bamshad Mobasher, Alfred Kobsa

October 25, 2009

New York, NY, USA

WORKSHOP CO-CHAIRS

 Dietmar Jannach, TU Dortmund, Germany
 Werner Geyer, IBM Research, Cambridge, MA, USA
 Jill Freyne, CSIRO, TasICT Centre, Australia
 Sarabjot Singh Anand, University of Warwick, UK
 Casey Dugan, IBM Research, Cambridge, MA, USA
Bamshad Mobasher, DePaul University, USA
 Alfred Kobsa, University of California, Irvine, USA

PROGRAM COMMITTEE / REVIEWERS

Shlomo Berkovsky, CSIRO, Australia
 Peter Brusilovsky, University of Pittsburgh, USA
 Carla Delgado-Battenfeld, TU Dortmund, Germany
Alexander Felfernig, TU Graz, Austria
Rosta Farzan Carnegie Mellon University, USA
Mouzhi Ge, TU Dortmund, Germany
Fatih Gedikli, TU Dortmund, Germany
Ido Guy, IBM Research, Haifa, Israel
Max Harper, University of Minnesota, Minnesota, USA
Shilad Sen, Macalester College, St. Paul, USA
Barry Smyth, University College Dublin, Ireland
Markus Zanker, University Klagenfurt, Austria

FOREWORD

The Social Web has been enjoying huge popularity in recent years, attracting millions
of visitors on sites such as Facebook, Delicious or YouTube. Today, we are no longer
mere consumers of information, but we also actively participate in social networks,
upload our personal photos, share our bookmarks, write web logs and annotate and
comment on the information provided by others. Following the exponential growth
in the popularity of Social Web sites, many traditional, non-social sites, are now
implementing social features. Likewise many enterprises are deploying internal
social media sites to support expertise location and sharing of work-related
information and knowledge. The Social Web therefore provides huge opportunities
for recommender technology and in turn recommender technologies can play a part
in fuelling the success of the Social Web phenomenon.

 New application areas for recommender systems emerge with the popularity of
the Social Web. Recommenders can not only be used to sort and filter Web 2.0
and social network information, they can also support users in the information
sharing process, e.g., by recommending suitable tags during folksonomy
development.

 Social systems by their definition encourage interaction between users and both
online content and other users, thus generating new sources of knowledge for
recommender systems. Web 2.0 users explicitly provide personal information
and implicitly express preferences through their interactions with others and the
system (e.g. commenting, friending, rating, etc.). These various new sources of
knowledge can be leveraged to improve recommendation techniques and
develop new strategies which focus on social recommendation. This social layer
can also be used as evidence on which to infer relationships and trust levels
between users for recommendation generation.

 The Social Web also presents new challenges for recommender systems, such as
the complicated nature of human-to-human interaction which comes into play
when recommending people. Or, the design and development of more
interactive and richer recommender system user interfaces that enable users to
express their opinions and preferences in an intuitive and effortless manner.

 Recommender technology assists social systems through increasing adoption and
participation and sustaining membership. Through targeted and timely
intervention which stimulates traffic and interaction, recommender technology
can play its role in sustaining the success of the Social Web.

The goal of this one-day workshop was to explore, discuss, and understand new
opportunities for recommender systems and the Social Web. The workshop consisted
both of technical sessions, in which selected participants presented their results or
ongoing research, as well as informal breakout sessions on more focused topics.

Papers discussing various aspects of recommender system in the Social Web were
submitted and selected for presentation and discussion in the workshop in a formal
reviewing process. The topics of the submitted papers included, among others, the
following main areas:

 Improved algorithms for tag recommendation for Social Media resources.
 Recommending Social Web resources such as shared bookmarks based on

folksonomies, tag contents and personal tagging histories.
 Recommending friends in Social Networks.
 Exploiting trust and other social relationships in Social Networks for improving

collaborative filtering recommender systems.
 User modeling and recommendation based on ontologies and Web 2.0 content.
 Attacks on Social Media sites.

The Workshop Organizing Committee

October 2009

CONTENTS

Improving Recommendation Accuracy by Clustering Social Networks
with Trust
T. DuBois, J. Golbeck, J. Kleint, A. Srinivasan

1

Collaborative and Content-based Filtering for Item Recommendation on
Social Bookmarking Websites
T. Bogers, A. van den Bosch

9

Improving Folkrank With Item-Based Collaborative Filtering
J. Gemmell, Th. Schimoler, M. Ramezani, L. Christiansen, B. Mobasher

17

A Tag Recommender System Exploiting User and Community Behavior
C. Musto, F. Narducci, M. De Gemmis, P. Lops, G. Semeraro

25

Social Trust as a solution to address sparsity-inherent problems of
Recommender systems
G. Pitsilis, S.J. Knapskog

33

Ontology Guided Dynamic Preference Elicitation
G. Chamiel, M. Pagnucco

41

Augmenting Collaborative Recommender by Fusing Explicit Social
Relationships
Q. Yuan, Sh. Zhao, L. Chen, Y. Liu, Sh. Ding, X. Zhang, W. Zheng

49

Spreading Activation Approach to Tag-aware Recommenders: Modeling
Similarity on Multidimensional Networks
A. Troussov, D. Parra, P. Brusilovsky

57

The Copied Item Injection Attack
N. Oostendorp, R. Sami

63

Does Trust Influence Information similarity?
D.H. Lee, P. Brusilovsky

71

A Holistic Approach to Enhance the Doctor-Patient Relationship for
Diabetes Using Social Networking, Personalized Alerts, Reminders, and
Recommendation
W. WL Yip, L. M. Quiroga

75

Using Wikipedia Content to Derive Ontology for Modeling end
Recommending Web pages across Systems
P.-C. Chang, L.M. Quiroga

79

Personalised Tag Recommendation
N. Landia, S. Singh Anand

83

A hybrid PLSA approach for warmer cold start in folksonomy
recommendation
A. Said, R. Wetzker, W. Umbrath, L. Hennig

87

Cobot: Real Time Multi User Conversational Search and
Recommendations (Demo)
S. Sahay, A. Venkatesh, A. Ram

91

Improving Recommendation Accuracy by Clustering
Social Networks with Trust

Tom DuBois
Computer Science Department

University of Maryland, College Park
College Park, MD 20741
tdubois@cs.umd.edu

Jennifer Golbeck
Human-Computer Interaction Lab

University of Maryland, College Park
College Park, MD 20741
jgolbeck@umd.edu

John Kleint
Computer Science Department

University of Maryland, College Park
College Park, MD 20741

jk@cs.umd.edu

Aravind Srinivasan
Computer Science Department

University of Maryland, College Park
College Park, MD 20741

srin@cs.umd.edu

ABSTRACT
Social trust relationships between users in social networks
speak to the similarity in opinions between the users, both
in general and in important nuanced ways. They have been
used in the past to make recommendations on the web. New
trust metrics allow us to easily cluster users based on trust.
In this paper, we investigate the use of trust clusters as a new
way of improving recommendations. Previous work on the
use of clusters has shown the technique to be relatively un-
successful, but those clusters were based on similarity rather
than trust. Our results show that when trust clusters are
integrated into memory-based collaborative filtering algo-
rithms, they lead to statistically significant improvements
in accuracy. In this paper we discuss our methods, experi-
ments, results, and potential future applications of the tech-
nique.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms

Keywords
recommender systems, trust, social networks

1. INTRODUCTION
Trust between users in a social network indicates similar-

ity in their opinions [25, 24, 11]. Hundreds of millions of
people are members of social networks online [10] and many
of those networks contain trust data. With access to this
information, trust has potential to improve the way recom-
mendations are made.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
RecSys ’09 New York, NY USA
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

Existing work has used trust to make recommendations by
treating it as a weight in collaborative filtering algorithms
[3, 9, 15]. This has been effective, but it is not the only way
in which trust can be used. If users can be clustered into
trusted groups, these may be useful for improving the qual-
ity of recommendations made with a variety of algorithms.
While clustering can be computationally difficult with so-
cial networks, a new trust metric we have developed makes
it easy to apply clustering techniques to build these groups.
Since trust is related to similarity, we use correlation clus-
tering to identify groups of trusted people.

This leads to the question: since we know that trust can
be useful for making recommendations directly, and if we
can effectively cluster users by trust, can those clusters be
used to improve recommendation accuracy further? There
has been some work on using clusters for improving rec-
ommendations already. These techniques cluster based on
similarity, much as collaborative filtering techniques rely on
user similarity. Unfortunately, research has not found an
improvement in accuracy using these methods and, in many
cases, the recommendation techniques using clusters actu-
ally lead to worse performance.

Previous experiments with trust have shown that it leads
to improvements over similarity-based recommendation tech-
niques in certain cases [8], and that user-assigned trust rat-
ings capture sophisticated types of similarity [11]. Thus, it
is possible that trust clusters may have benefits that are not
found when similarity-based clusters are used. Our results
show that incorporating trust clusters into collaborative fil-
tering algorithms - including algorithms that use Pearson
correlation coefficients and algorithms that use trust - does
indeed lead to statistically significant improvemnets.

In this paper, we will present a discussion of our new trust
metric and its applications to clustering, the integration of
these clusters into recommendation algorithms, the experi-
ment where we tested these algorithms and found the im-
provement in accuracy, and finally discuss a range of appli-
cations where this technique may be beneficial.

2. RELATED WORK
User clustering has been applied to the task of collabora-

tive filtering before, but our work is the first that uses trust

-1-

jannach
Rechteck

as a basis for forming clusters. In this section, we describe
work that has been done on using clustering for collabora-
tive filtering and on using trust for collaborative filtering.
Then, we introduce the dataset used in our computations
and experiments.

2.1 Clustering and Collaborative Filtering
Breese et al. [5] used a Bayesian clustering model to clus-

ter users based on their ratings. Their work showed mixed
results; in some cases the clustering approach was competi-
tive in terms of accuracy of the ratings and in others it per-
formed poorly. Ungar and Foster [23] also used a Bayesian
approach to cluster users based on their preferences. Their
results also showed that clustering users was not a particu-
larly successful approach. Graph theoretic methods for clus-
tering users based on preferences were discussed in [19], how-
ever they do not evaluate the impact these clusters have on
recommendation accuracy or quality. Finally, in [22] users
were clustered using a scalable neighborhood algorithm and,
once again, the clustering approach had a higher MAE than
the standard collaborative filtering method.

2.2 Trust and Collaborative Filtering
Social networks, and trust in particular, have been used

to generate recommendations for users. In these cases, trust
is used directly to generate the recommendation. This work
follows from the fact that people tend to develop connec-
tions with people who have similar preferences [1]. Trusting
the opinion of another particularly speaks to this type of
similarity. The applicability of this effect to recommender
systems has been established in several papers. Ziegler and
Lausen [25] that showed a correlation between trust and user
similarity in an empirical study of a real online community.
Using All Consuming 1, an online community where users
rate books. The authors showed that users were significantly
more similar to their trusted peers than to the population as
a whole. This work was extended in [24] which augmented
the analysis of the All Consuming community and added
an analysis. The second result in [24] used the FilmTrust
system[9] (described below) where users have stated how
much they trust their friends in a social network and also
rated movies. Within that community, results also showed
a strong correlation between trust and similarity in movie
ratings. Further work in [11] shows that trust captures sim-
ilarity in more nuanced ways, such as similarity on items
with extreme ratings and large differences.

Empirical results show that using trust from social net-
works can improve recommendations. O’Donovan and Smyth
[20] performed an analysis of how trust impacts the accu-
racy of recommender systems. Using the MovieLens dataset
[18], they create trust-values by estimating how accurately
a person predicted the preferences of another. Those trust
values were then used in connection with a traditional col-
laborative filtering algorithm [14], and an evaluation showed
significant improvement in the accuracy of the recommenda-
tions. Massa and Bhattacharjee [16] also conducted a study
on the applicability of trust in recommender systems. Their
study relied on the user ratings of products and trust rat-
ings of other users from epinions 2 as their dataset. Using
a trust propagation algorithm, similar to that described in
section 3, they showed that trust based recommendations

1http://allconsuming.net/
2http://epinions.com

could perform significantly better than those based on sim-
ilarity alone.

In the FilmTrust recommender system mentioned above,
trust is used in place of the Pearson correlation coefficient to
generate predictive ratings. Results showed that when the
user’s rating of a movie is different than the average rating,
it is likely that the recommended rating will more closely
reflect the user’s tastes. As the magnitude of this difference
increases, the benefit offered by the trust-based recommen-
dation also increases. Moleskiing [3], at http://moleskiing.it,
is another real system built to utilize trust ratings in a rec-
ommender system. Using a similar approach, it recommends
routes to users based on information supplied by trusted
peers.

2.3 Dataset
For these experiments, we needed our dataset to have two

components:

1. A social network with trust ratings between individu-
als so we could apply the trust inference algorithm and
clustering methods discussed in section 3.

2. Ratings of items by the members of that social net-
work.

We used the FilmTrust dataset [9] for these experiments
because it had both these features - a trust network and
a set of ratings on movies. Because trust assigned by one
user to another is a value that is kept very private, there are
no other publicly available datasets with this information.
Thus, while FilmTrust provides a good basis for this initial
analysis, further analysis with privately held trust networks
will likely lead to additional insights.

At the time of analysis, the FilmTrust movie rating dataset
has 29,551 ratings by 1,254 unique users over 1,946 movies.
That is an average of 15.2 ratings per movie, though some
movies have hundreds of ratings. Trust values are assigned
on a 1 to 10 scale and are asymmetric; Alice may trust Bob
at level n, but Bob may have no trust or a different value of
trust in return for Alice. The entire FilmTrust social net-
work has 712 nodes with 1,465 edges and an average of trust
rating is 6.83. Many of these nodes are in small groups of
two or three disconnected from the main component. For
our algorithms, we selected the the giant component and re-
moved nodes with a degree of 1. This left 348 nodes with
1,059 edges in the FilmTrust network. Since our recommen-
dation technique required nodes to be in the social network,
we used only the ratings from these 348 nodes. They had
8,457 ratings on 1,558 movies.

3. A PROBABILISTIC TRUST INFERENCE
ALGORITHM

As part of our previous work [6], we developed a proba-
bilistic trust inference algorithm that leads nicely to cluster-
ing applications. In this section we present an overview of
that work and discuss the clustering techniques used.

3.1 The Trust Inference Algorithm
Our work takes a trust network, which may be very sparse

since most people will know only a small fraction of the net-
work, and generates inferred trust values between all pairs
in the network. We then use these trust values as the basis

-2-

in a trust distance metric space, where the more trust be-
tween a pair, the closer they are in the space. One of the
major benefits of our approach, and the benefit we exploit
here, is the ability to group people into clusters within this
metric space. In this section we present our probabilistic
trust inference algorithm and describe the properties of its
output which make it easy to cluster.

A very intuitive idea motivates this trust inference model.
Consider the following scenario:

• Alice knows Bob and thinks he has a pa,b chance of
being trustworthy.

• Bob knows Eve and thinks she has a pb,e chance of be-
ing trustworthy, and he tells this to Alice if he is trust-
worthy. If Bob is not trustworthy, he may lie about
pb,e and give any value to Alice.

• Alice reasons that Eve is trustworthy if Bob is trust-
worthy and gives her the correct value pb,e and Eve is
trustworthy with respect to Bob.

• This combination happens with probability pa,bpb,e if
Bob’s trustworthiness and Eve’s trustworthiness are
independent.

Thus we infer that Alice’s trust in Eve should be pa,bpb,e.
More formally we view any path through the network as a
Bayesian chain. Define XBob, XEve to be the respective ran-
dom events that Bob and Eve are trustworthy from Alice’s
perspective. This is explained in more detail in Figure 1.

The same analysis can be used if trust is a proxy for sim-
ilarity. Specifically Alice and Bob’s mutual trust can be a
measure of how similar their tastes in movies are. If trust is
interpreted as probability of liking the same film, then Alice
will agree with Eve about a movie if (but not necessarily
only if) Alice and Bob agree on it and Bob and Eve agree
as well.

Our model would not be interesting if it required simple
probabilities which can be computed exactly. Fortunately
we can quickly estimate trust between individuals in a more
complicated network, one with exponentially many, highly
correlated paths between pairs of nodes. In these examples,
the Bayesian chain view still applies. If there exists a path
from Alice to Eve in a random network constructed from
trust values, then that path is a chain of people from Alice
to Eve who each trust their successor, and Alice can trust
Eve. Therefore Alice trusts Eve with the probability that
there is a path from Alice to Eve in the random graph.

We define tu,v to be the direct trust between u and v, and
Tu,v to be our inferred trust value. The direct trust values
may be arbitrary, however the inferred trust should obey the
axioms in Table 1.

The idea that trust networks can be treated as random
graphs underlies this algorithm. For every pair (u, v), we
place an edge between them with some probability that
depends on tu,v. We then infer trust between two people
from the probability that they are connected in the result-
ing graphs. Formally we choose a mapping f from trust
value to probabilities. We then create a random graph G
where each edge (u, v) exists with probability f(tu,v). We
then use this graph to generate inferred trust values Tu,v

such that f(Tu,v) equals the probability that there is a path
from u to v in the random graph. We give a small illustra-
tive example graph in Figure 2. This model is one of many
that satisfies our trust axioms.

Axioms of inferred Trust

Local Pessimism Since tu,v is a pessimistic estimate, in-
direct information can only increase
trust, thus Tu,v ≥ tu,v.

Bottleneck If all paths from u to v use (a, b), then
Tu,v ≤ ta,b, and in general the lower
ta,b is, the lower Tu,v should be.

Identity Individuals should completely trust
themselves: Tu,u = Tmax.

Complete Trust If there exists a path (a0, ai, . . . , an)
such that for all i from 1 to n :
tai−1,ai

= Tmax, then Ta0,an = Tmax.
Monotonicity For any u, v such that Tu,v < Tmax,

augmenting a graph with a new trust
path from u to v, or increasing a
ta,b value along an existing trust path
should increase Tu,v.

No Trust For any u, v with no path from u to v,
Tu,v = 0.

Table 1: These rules should apply to any pessimistic
system which derives inferred trust from direct trust
information.

1

2

1

2

1

2

1

2 1

2

1

2 1

2

a

b

c d

e

f

Figure 2: This is an example network with a critical
edge. No one from the set {a, b, c} can trust anyone
in {d, e, f} except through the mutual trust between
c and d.

-3-

Pr[XEve] = Pr[XEve|XBob] · Pr[XBob] + Pr[XEve|XBob] · Pr[XBob]

≥ Pr[XEve|XBob] · Pr[XBob] = Pr[XBob ∧ XEve].

Figure 1: The second term drops out because Alice has no information about Eve if Bob is not trustworthy.
Furthermore, if Eve and Bob are independent, this probability becomes Pr[XBob]Pr[XEve].

t/10 t/15 1

Figure 3: Here we show distance grids, partitionings for the FilmTrust dataset, and the color code for the
grids. The i, j pixel in each grid encodes the distance between the ith and jth people accoring to our metric.
The color code is given by the bottom rightmost image, with red being 0 distance and violet being distances
of 10 and above. The rightmost grid is not probabilistic, but instead shows the transitive closure of the edge
set.

3.2 Trust Based Clustering

Given that f(Tu,v) is the probability of a path connecting
u and v. The function d(u, v) = log 1

f(Tu,v)
defines a metric

space on the nodes because it satisfies four conditions:

• d(u, v) ≥ 0

• d(u, v) = d(v, u) (though this condition is not neces-
sary for asymmetric metrics).

• d(u, u) = 0

• d(u, v) + d(v, w) ≥ d(u, w)

Since we have a metric space on the nodes where the fur-
ther apart two nodes are, the lower the probability of a path
between them, we can make use of existing metric clustering
algorithm to partition the nodes into groups. A clustering
algorithm takes a set of points in a metric space and groups
them in a way that tries to optimize some criteria. Examples

include, k-centers which finds a set of points S of k points
which minimizes the distance from any point to its closest
point in S, k-means which partitions the points into k sets
in a way that minimizes the variance within each group, and
correlation clustering which partitions the points in a way
that minimizes the sum of distances within groups minus
the sum of distances across groups. Each of these cluster-
ing algorithms have good approximation algorithms when
applied to points in a symmetric metric space [12, 13, 4],
and some even have good approximations in an asymmetric
metric space [2].

While any of these clusterings can be applied, we focus on
a variant of correlation clustering. Its goal - finding clus-
ters maximizing agreement within and minimizing agree-
ment between clusters - fits naturally with our application.
Also, Unlike most clustering algorithms, no k representing
the number of clusters is provided as input, since optimiz-
ing agreement is independent of the number of clusters. In
our application, the trust value from one node to another

-4-

Figure 4: The size of the six largest clusters in for each iteration of the correlation clustering algorithm. The
purple/blue bars indicate when the algorithm was run with a maximum radius of 1, the red/orange bars a
maximum radius of 2, and the green bars a radius of 3. Six iterations are shown as the bars within each color
group.

can be treated as a measure of similarity, with high trust in-
dicating agreement and low trust indicating disagreement.
Using the complete graph output from the trust inference
algorithm, we can perform a correlation clustering over the
graph, grouping people together who have more trust for
one another.

Figure 3 shows the results from applying our algorithm
to the FilmTrust network. The distance grid shows one
large mutually trusting group, as well as several progres-
sively smaller mutually trusting groups. The largest of the
groups is trusted by a large portion of the network. The
second largest group is well trusted by this largest group.
Beyond that, the plot where f(t) = t/15 brings out the
most difference within the groups.

Finding an optimal correlation clustering is NP-hard [7],
but there are efficient constant factor approximation algo-
rithms. We use a variant where while there are nodes left
to cluster, we choose one at random to be a ”‘center”’ and
create a new cluster out of all nodes within a fixed radius of
this center. Since this algorithm is randomized, the output
can vary from one execution to another. Thus, in clustering
our inferred trust network, we ran several iterations of the
algorithm to produce a representative set of clusters to work
with.

In order to obtain clusters for our recommender system,
we ran the correlation clustering algorithm on the network
output by running our trust inference algorithm over the
FilmTrust data. We used a maximum radius of 1, 2, and 3,
and ran six iterations of the algorithm for each. With this
dataset, the algorithm generates one very large cluster, two
or three medium sized clusters, and many small clusters.
Figure 4 shows the size of the six largest clusters in each
iteration for all three maximum radii.

4. EXPERIMENTS AND RESULTS

To test whether or not using trust-based clusters drawn
from social networks could be used to improve the quality

of recommendations, we ran several experiments. In this
section, we discuss the datasets, experimental design, and
results that show clusters can indeed improve the accuracy
of recommendations.

4.1 Recommendation Algorithms
There are many methods for generating predictive recom-

mendations. Our goal in this work was not to create the
next best recommendation algorithm but rather to demon-
strate that using clusters based on trust has the potential to
improve the accuracy of recommendations.

We used several basic recommendation algorithms to test
our hypothesis. The first is a basic ACF algorithm com-
putes a weighted average of ratings using the Pearson Cor-
realtion coefficient between the recommendee and the rater
as a weight. To compute a recommendation we required
pairs of nodes to have at least four movies in common so we
could compute a meaningful correlation coefficient. We also
tested a trust-based recommender algorithm. There are a
number of approaches to using trust for recommendations
[9, 21, 17, 16], and we used a simple variation on user-user
automated collaborative filtering (ACF), replacing the cor-
relation coefficient with the inferred trust value computed
using the method described above. Thus, people the recom-
mendee trusts more will receive more weight. This approach
has been used before and shown to produce equivalent re-
sults to ACF overall, and improved results in certain cases
[9].

Both algorithms were modified to give more weight to
ratings from nodes in the same cluster as the recommendee.
Considering only ratings by nodes in the same cluster would
exclude so much information that recommendations would
suffer. However, if we believe that the clustered nodes are
more valuable, we can give them more weight than would be
afforded using only the trust value. In these experiments,
gave an additional 5% weight to nodes in the same cluster.
All ratings for a movie were considered and weighted by the
inferred trust from the recomendee to the rater. Ratings

-5-

Figure 5: This illustrates the improvement in accuracy. The y-axis indicates Mean Absolute Error (MAE)
so lower values are better. Blue bars indicate the results from the cluster-enhanced algorithms and red bars
are the control. The numbers on the x-axis indicate the maximum radius of the clusters.

Table 2: Experimental Results of Cluster-Enhanced Recommendations. The cluster-enhanced method signif-
icantly outperforms the control in all cases.

Method Cluster
Radius

MAE
(method)

MAE
(control)

p-value RMSE
(method)

RMSE
(control)

p-value

ACF 1 0.53454 0.53460 0.0031 0.70199 0.70204 0.0273
ACF 2 0.53452 0.53460 0.0012 0.70196 0.70204 0.0022
ACF 3 0.53453 0.53460 0.0069 0.70194 0.70204 0.0004
Trust 1 0.63495 0.63501 0.0018 0.82614 0.82620 0.0076
Trust 2 0.63496 0.63501 0.0274 0.82615 0.82620 0.0493
Trust 3 0.63496 0.63501 0.0342 0.82614 0.82620 0.0356

by nodes in the same cluster as the recommendee had their
weight multiplied by 1.05. This approach was used with the
Pearson corrleation-based ACF method and the trust-based
recommendation.

4.2 Experimental Setup
To test our hypothesis that using the trust clusters im-

proves the accuracy of recommendations, we ran the follow-
ing process.

1. Select an iteration of the clustering algorithm to obtain
clusters

2. For each user-movie pair, generate a predictive rating
for the movie in two ways:

(a) Using the standard trust-based recommendation
algorithm

(b) Using a modified trust-based recommendation al-
gorithm that gives more weight to the nodes in
the same cluster as the user as described above

3. Compare the MAE and RMSE for the two recommen-
dation methods

This was repeated for each iteration and configuration of
the clustering algorithm and for all of the cluster-enhanced
algorithms described above. The clustering algorithms pro-
duced several large clusters and many very small clusters.

We used only clusters with five or more nodes. To run the
experiments using trust-based recommendations, it was nec-
essary that we had an inferred trust value between the con-
sidered nodes in the network. Thus, nodes that were outside
the giant component and thus had no inferred trust values
were excluded. For consistency, we used the same set of
nodes in all of our experiments.

4.3 Results
Our results showed that both cluster-enhanced recommen-

dations (giving 5% extra weight to the ratings from people
in the same cluster as the recommendee) offered a small
but statistically significantly improvement in accuracy over
the algorithms that did not consider the clusters. All sig-
nificance results were computed using a Student’s t-test for
paired samples and were significant for p < 0.05.

Since the correlation clustering algorithm is randomized,
we ran six iterations of the algorithm to obtain a represen-
tative sample. We ran the experiment on each iteration and
then took the average rating for each user-movie pair over
the six iterations to compare to the known value and judge
the impact of the cluster-enhanced approach. This ensured
that we could see the true impact of the approach and not
be misled by an unusually good or bad clustering.

Table 4 shows the results of our different cluster-enhanced
algorithms on the dataset. For both the mean absolute er-
ror (MAE) and root mean squared error (RMSE), the algo-

-6-

rithm that took advantage of the clusters significantly out-
performed the control, which ignored clusters.

4.3.1 Coverage
Clusters will not affect recommendations in all cases; it is

possible that no one in the same cluster as the recommendee
has rated the movie in question. In those cases, the result
will be the same as the control method. However, analysis
shows that at least one person who rated the movie is in
the cluster approximately 70% of the time, and thus the
clustering technique will have an impact.

5. DISCUSSION
These results show a small but statistically significant im-

provement in accuracy when correlation clusters generated
from a trust network are incorporated into a recommender
system. While the magnitude of the improvement is small,
these results are promising when we consider that similarity-
based clustering approaches typically perform significantly
worse that their non-clustered counterparts.

Furthermore, we believe that the results of this approach
will become more practically significant on larger social net-
works. Our method requires a social network with trust
values and item ratings created by the people in the net-
work. We ran these experiments on a network with 348
nodes, which is small relative to most web-based social net-
works3. We used this network because it is the only one
we had access to with the necessary data; since trust values
must be kept private to be effective, other datasets are not
made public by the large social networks that have them.
This lack of public data does not limit the applicability of
the technique; it can be applied within privately held net-
works where access to trust data is not a problem. The
needed data exists internally on many large networks, such
as Orkut. It also can be estimated from rating data on items
a pair of users have in common [11].

With the larger social networks, we will see more large
clusters. Since the experimental network has one large trusted
cluster, and several smaller ones, our results show a sig-
nificant improvement essentially from giving less weight to
nodes outside the cluster. We expect to see this effect mag-
nified when there are more large clusters.

The fact that considering trust-clusters can improve rec-
ommendations also suggests that is has potential to help
with other applications. By relying on connections in the
social network, it is possible to eliminate many types of
attacks or gaming in rating systems that rely on creating
multiple accounts. While these accounts could all connect
to one another with high trust, they would only be clus-
tered wiht “good” users if some of these good users assigned
them high trust ratings as well. However, previous work has
shown that it is possible to eliminate these confused nodes
from consideration [15]. These approaches together have the
potential to very effectively eliminate forged ratings and re-
views at the same time as they highlight those most relevant
to the user.

5.1 Conclusions
Trust is strongly correlated with how similar two users are

in their preferences. It reflects similarity in nuanced ways
3Among the 250 social networks listed at
http://trust.mindswap.org/ the mean size is over 4,600,000
and the median is 22,000.

that has been shown to be useful for making recommenda-
tions. In this paper, we looked at taking trust a step further.
We clustered users based on the trust between them using
correlation clustering and then modified a collaborative fil-
tering algorithm to use these clusters.

To test our approach we used a traditional Pearson cor-
relation collaborative filtering algorithm and a recommen-
dation algorithm that used trust for generating recommen-
dations independently of the clusters. In both, we modified
the algorithms to give extra weight to ratings from nodes
in the same cluster as the user for whom the rating was
being generated. We compared the accuracy of these rec-
ommendations to those made by the unmodified version of
the algorithm. In both cases, our results show a small but
statistically significant improvement in the accuracy of rec-
ommendations when clusters are used.

This improvement is particularly interesting since previ-
ous work on clustering, which was based on user similarity,
failed to outperform non-clustered methods and often per-
formed significantly worse. It suggests that trust captures
more sophisticated information about the similarity between
two people and that it is particularly useful for highlighting
more relevant information in recommendation environments.
We believe this effect will be magnified in bigger networks
and that it has applications to limiting gaming and other
attacks in online rating systems.

6. ACKNOWLEDGMENTS
Supported in part by NSF ITR Award CNS-0426683 and

NSF Award CNS-0626636, and DARPA.

7. REFERENCES
[1] A. Abdul-Rahman and S. Hailes. Supporting trust in

virtual communities. In Proceedings of the 33rd Hawaii
International Conference on System Sciences, 2000.

[2] Aaron Archer. Two O(log ∗ k)-approximation
algorithms for the asymmetric k-center problem. In
Proceedings of the 8th Conference on Integer
Programming and Combinatorial Optimization, pages
1–14. Springer-Verlag, 2001.

[3] Paolo Avesani, Paolo Massa, and Roberto Tiella.
Moleskiing.it: a trust-aware recommender system for
ski mountaineering. International Journal for
Infonomics, 2005.

[4] Nikhil Bansal, Avrim Blum, and Shuchi Chawla.
Correlation clustering. In Machine Learning, pages
238–247, 2002.

[5] John S. Breese, David Heckerman, and Carl Kadie.
Empirical analysis of predictive algorithms for
collaborative filtering. pages 43–52, 1998.

[6] Thomas DuBois, Jennifer Golbeck, and Aravind
Srinivasan. Rigorous probabilistic trust-inference with
applications to clustering. In IEEE / WIC / ACM
Conference on Web Intelligence, 2009.

[7] M.R. Garey, D.S. Johnson, et al. Computers and
Intractability: A Guide to the Theory of
NP-completeness. wh freeman San Francisco, 1979.

[8] Jennifer Golbeck. Computing and Applying Trust in
Web-based Social Networks. PhD thesis, University of
Maryland, College Park, MD, April 2005.

[9] Jennifer Golbeck. Generating predictive movie
recommendations from trust in social networks. In

-7-

Proceedings of the Fourth International Conference on
Trust Management, 2006.

[10] Jennifer Golbeck. The dynamics of web-based social
networks: Membership, relationships, and change.
First Monday, 12(11), 2007.

[11] Jennifer Golbeck. Trust and nuanced profile similarity
in online social networks. ACM Transactions on the
Web, in press.

[12] Dorit S. Hochbaum and David B. Shmoys. Best
possible heuristic for the k-center problem.
Mathematics of Operations Research, (2):180–184,
May 1985.

[13] Tapas Kanungo, David M. Mount, Nathan S.
Netanyahu, Christine D. Piatko, Ruth Silverman, and
Angela Y. Wu. A local search approximation
algorithm for k-means clustering. In SCG ’02:
Proceedings of the eighteenth annual symposium on
Computational geometry, pages 10–18, New York, NY,
USA, 2002. ACM.

[14] Joseph A. Konstan, Bradley N. Miller, David Maltz,
Jonathan L. Herlocker, Lee R. Gordon, and John
Riedl. Grouplens: applying collaborative filtering to
usenet news. Commun. ACM, 40(3):77–87, 1997.

[15] Raph Levien and Alex Aiken. Attack-resistant trust
metrics for public key certification. In 7th USENIX
Security Symposium, pages 229–242, 1998.

[16] P. Massa and B. Bhattacharjee. Using trust in
recommender systems: an experimental analysis. In
Proc. of 2nd Int. Conference on Trust Management,
2004., 2004.

[17] R. Matthew, R. Agrawal, and P. Domingos. Trust
management for the semantic web. In Proceedings of
the Second International Semantic Web Conference.,
2003.

[18] Bradley N. Miller, Istvan Albert, Shyong K. Lam,
Joseph A. Konstan, and John Riedl. Movielens
unplugged: experiences with an occasionally
connected recommender system. In IUI ’03:
Proceedings of the 8th international conference on
Intelligent user interfaces, pages 263–266, New York,
NY, USA, 2003. ACM.

[19] B.J. Mirza, B.J. Keller, and N. Ramakrishnan.
Studying recommendation algorithms by graph
analysis. Journal of Intelligent Information Systems,
20(2):131–160, 2003.

[20] John O’Donovan and Barry Smyth. Trust in
recommender systems. In IUI ’05: Proceedings of the
10th international conference on Intelligent user
interfaces, pages 167–174, New York, NY, USA, 2005.
ACM.

[21] John O’Donovan and Barry Smyth. Trust in
recommender systems. In IUI ’05: Proceedings of the
10th international conference on Intelligent user
interfaces, pages 167–174, New York, NY, USA, 2005.
ACM.

[22] B.M. Sarwar, G. Karypis, J. Konstan, and J. Riedl.
Recommender systems for large-scale e-commerce:
Scalable neighborhood formation using clustering. In
Proceedings of the Fifth International Conference on
Computer and Information Technology, pages
158–167, 2002.

[23] L.H. Ungar and D.P. Foster. Clustering methods for

collaborative filtering. In AAAI Workshop on
Recommendation Systems, pages 112–125, 1998.

[24] Cai-Nicolas Ziegler and Jennifer Golbeck.
Investigating Correlations of Trust and Interest
Similarity. Decision Support Services, 2006.

[25] Cai-Nicolas Ziegler and Georg Lausen. Analyzing
correlation between trust and user similarity in online
communities. In Proceedings of the Second
International Conference on Trust Management, 2004.

-8-

Collaborative and Content-based Filtering for Item
Recommendation on Social Bookmarking Websites

Toine Bogers
ILK / Tilburg centre for Creative Computing

Tilburg University
P.O. Box 90153, 5000 LE
Tilburg, The Netherlands
A.M.Bogers@uvt.nl

Antal van den Bosch
ILK / Tilburg centre for Creative Computing

Tilburg University
P.O. Box 90153, 5000 LE
Tilburg, The Netherlands

Antal.vdnBosch@uvt.nl

ABSTRACT
Social bookmarking websites allow users to store, organize, and
search bookmarks of web pages. Users of these services can an-
notate their bookmarks by using informal tags and other metadata,
such as titles, descriptions, etc. In this paper, we focus on the task
of item recommendation for social bookmarking websites, i.e. pre-
dicting which unseen bookmarks a user might like based on his or
her profile. We examine how we can incorporate the tags and other
metadata into a nearest-neighbor collaborative filtering (CF) algo-
rithm, by replacing the traditional usage-based similarity metrics
by tag overlap, and by fusing tag-based similarity with usage-based
similarity. In addition, we perform experiments with content-based
filtering by using the metadata content to recommend interesting
items. We generate recommendations directly based on Kullback-
Leibler divergence of the metadata language models, and we ex-
plore the use of this metadata in calculating user and item simi-
larities. We perform our experiments on three data sets from two
different domains: Delicious, CiteULike and BibSonomy.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: H.3.1 Content Anal-
ysis and Indexing; H.3.3 Information Search and Retrieval; H.3.4
Systems and Software

General Terms
Algorithms, Measurement, Performance, Experimentation

Keywords
Recommender systems, social bookmarking, folksonomies, collab-
orative filtering, content-based filtering

1. INTRODUCTION
Recommender systems belong to a class of personalized infor-

mation filtering technologies that aim to identify which items in
a catalog might be of interest to a particular user. Recommenda-
tions can be made using a variety of information sources related to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM RecSys ’09 Workshop on Recommender Systems and the Social Web
October 25, 2009, New York, NY, USA.
Copyright 2009 by the author(s).

both the user and the items: past user preferences, purchase his-
tory, demographic information, item popularity, the metadata char-
acteristics of the products, etc. Social bookmarking websites, with
their emphasis on open collaborative information access, offer an
ideal scenario for the application of recommender systems technol-
ogy. They allow users to manage their favorite bookmarks online
through a web interface and, in many cases, allow their users to
tag the content they added to the system with keywords. The ag-
gregation of these tags, the folksonomy, is an extra annotation layer
connecting users and items. The underlying application then makes
all information sharable among users. The success of such websites
partly depends on how the connections between users, items, and
tags are exploited.

Social bookmarking websites also offer possibilities for attach-
ing item-specific metadata to each item, such as the item’s title or
summary. This additional metadata could also be used to support
the recommendation process. Using item metadata to boost perfor-
mance is not new in recommender systems research, but typically
such content-related information is attached to the items, and is
therefore the same across all users [23]. On the other hand, the tags
assigned to items are specific to the user who added them. We know
of no approaches to item recommendation for social bookmarking
that investigate the use of such metadata.

In this paper we focus on the question how we can make use
the information represented by the folksonomy and the item meta-
data to boost the performance of traditional collaborative filtering
algorithms. We make the following contributions. First, we exam-
ine different ways of extending the standard nearest-neighbor algo-
rithm with information about tagging behavior. Second, we explore
how best to use the metadata for recommendation by proposing
four different algorithms. Finally, we perform our experiments on
publicly available data sets with standardized evaluation metrics to
promote verifiability. The remainder of this paper is structured as
follows. We start by introducing our data sets and experimental
setup in the next section. In Section 3 we describe and compare
different CF algorithms that operate on the folksonomy to gener-
ate recommendations. Section 4 we describe how we exploit the
metadata in our data sets to generate item recommendations. We
describe the related work in Section 5 and conclude in Section 6.

2. METHODOLOGY

2.1 Data Sets
We base our experiments on four data sets that were collected

from three different social bookmarking websites with different char-
acteristics: CiteULike, BibSonomy, and Delicious. Two data sets
correspond to the domain of Web page bookmarks (Delicious and

-9-

jannach
Rechteck

BibSonomy) and the other two cover the domain of scientific arti-
cles (Delicious and BibSonomy).

CiteULike is a social bookmarking service that allows its users to
add their academic reference library to an online profile1. Articles
can be stored with their metadata, abstracts, and links to the papers
at the publishers’ sites. Users can also add personal comments and
tags. CiteULike offers daily dumps of their core database. We used
the dump of November 2, 2007 as the basis for our experiments.
A dump contains all information on which articles were posted by
whom, with which tags, and at what point in time. It does not, how-
ever, contain any other item metadata, so we crawled this ourselves
from the CiteULike website using the article IDs. Articles are an-
notated using the standard BibTeX-like fields, such as title, author
names, page numbers, publisher information, etc.

BibSonomy is a social bookmarking service for sharing Web
page bookmarks and reference lists of scientific articles2. Items
are stored and represented by their BibTeX metadata representa-
tions. These can include abstracts and links to the papers at the pub-
lishers’ websites. Users are able to tag their bookmarked content
and use these tags to browse and discover related references [13].
BibSonomy’s creators organized the 2008 ECML/PKDD Discov-
ery Challenge which focused on social bookmarking, and released
the BibSonomy data set to the public in May 2008 as part of this
challenge3. The organizers made a snapshot of the BibSonomy
system consisting of all resources posted to BibSonomy between
its inception in 2006 and March 31, 2008. It includes the same
type of article metadata as we collected for CiteULike. The dis-
tinction between bookmarks and BibTeX records is also made in
this snapshot. We therefore split this data dump into a data set con-
taining only web bookmarks (Bibsonomy Bookmarks), and a data
set containing only scientific articles (Bibsonomy Articles).

Delicious is a social bookmarking service for storing, sharing,
and discovering web bookmarks. It allows its users to manage
and tag URLs of web pages4. Unlike CiteULike and BibSonomy,
Delicious does not offer data dumps of their databases, so we gath-
ered our data set by crawling a subset of the Delicious website. Be-
cause of our focus on the task of item recommendation for users,
our aim was to collect a balanced, unbiased set of user profiles,
i.e. the complete set of bookmarks a user had posted to Delicious.
From an earlier breadth-first crawl of Delicious we obtained a list
of 300,000 users. We randomly selected around 18,000 of these
users to match the size of our CiteULike data set, and crawled their
entire profiles.

2.1.1 Data set filtering
It is common practice in recommender system evaluation to se-

lect realistic subsets of the data sets used to ensure that reliable
recommendations can be generated. This also allows for a fair
comparisons of different recommendation algorithms [11]. This
is typically done by filtering out users or items whose profile size
or popularity falls below a certain threshold. We follow this proce-
dure in our preparation of the data sets as well. We only retain the
users who have added 20 items or more to their personal profile. In
addition, we filter out all items that occur only once, as well as all
untagged posts. We were able to identify and filter out most of the
spam content in the CiteULike and BibSonomy data sets. We refer
the reader to [5] for more details about this process. Table 1 lists
the statistics of our four data sets after filtering.

1http://www.citeulike.org/
2http://www.bibsonomy.org/
3http://www.kde.cs.uni-kassel.de/ws/rsdc08/
4http://www.delicious.com/

2.2 Experimental Setup & Evaluation
In order to evaluate and compare different recommender algo-

rithms, we need a proper framework for experimentation and evalu-
ation. Recommender systems evaluation—and the differences with
IR evaluation—has been addressed by, among others, [11]. We
evaluate the “Find Good Items” task, also known as Top-N rec-
ommendation, where users are provided with a ranked list of rec-
ommended items based on their personal profile. We divide each
data set into a training and test set by randomly selecting 10% of
the users to be in our test set. Final performance is evaluated on
this 10% by withholding 10 items from each of these so-called ac-
tive users, and using the remaining profile items together with the
training set to generate the recommendations for those 10%. If the
withheld items are predicted at the top of the ranked result list, then
the algorithm is considered to do perform well. To prevent over-
estimation when optimizing algorithm parameters, we use 10-fold
cross-validation. We subdivide our training set into 10 folds and
use these for 10-fold cross-validation of our parameter optimiza-
tion. For each fold, 10 items are withheld from the test fold users
to be retrieved by the recommendation algorithm. The final values
for our evaluation metric on the withheld items are then macro-
averaged over the 10 folds.

In our evaluation, we adopt an IR perspective by treating each of
the users as a separate query or topic. The 10 withheld items for
each user constitute the items for which we have relevance judg-
ments. Herlocker et al. [11] assess the usefulness of different met-
rics for different types of recommendation tasks. For the Top-N
recommendation task, they find that metrics that take into account
the ranking of the items are most appropriate. We therefore evalu-
ate our algorithms using Mean Average Precision (MAP), which is
defined as the average of the Average Precision values calculated
over each relevant retrieved item. For determining significance of
differences between runs, we use a two-tailed paired Student’s t-
test. We report on significant differences against the best baseline
runs using M (and O) for α = .05 and N (and H) for α = .01.

3. FOLKSONOMIC RECOMMENDATION
We start by establishing some notation and definitions of the task

at hand, based in part on notation by [9]. In the social bookmarking
setting, users post items to their personal profiles and can choose
to label them with one or more tags. We define a folksonomy to be
the tripartite graph that emerges from this collaborative annotation
of items. The resulting ternary relations that make up the tripar-
tite graph can be represented as a 3D matrix of users, items, and
tags. Figure 1 illustrates this view. We refer to the 3D matrix as
D(uk, il, tm). Here, each element d(k, l,m) of this matrix indicates
if user uk (with k = {1, . . . ,K}) tagged item il (with l = {1, . . . , L})
with tag tm (with m = {1, . . . ,M}), where a value of 1 indicates the
ternary relation is present in the folksonomy.

In conventional recommender systems, the user-item matrix con-
tains ratings information. These ratings can be explicit, when they
are entered directly by the user, or implicit, when they are inferred
from user behavior. In our case we have implicit, unary ratings
where all items that were added by a user receive a rating of 1.
We extract this ratings matrix R(uk, il) for all user-item pairs di-
rectly from the tripartite graph. We denote its individual elements
by xk,l = {1, ∅}. Each user is represented in this matrix as its user
profile row vector uk, which lists the items that user added to his or
her profile. Items are represented by the column vectors of R which
represent the item profile vectors il that contain all users that have
added that item. As shown in Figure 1, we can also extract a user-
item matrix from D by aggregating over the tag dimension. We then

-10-

http://www.citeulike.org/
http://www.bibsonomy.org/
http://www.kde.cs.uni-kassel.de/ws/rsdc08/
http://www.delicious.com/

Table 1: Statistics of the filtered versions of our four data sets.
bookmarks articles

Delicious BibSonomy CiteULike BibSonomy
users 1,243 192 1,322 167
items 152,698 11,165 38,419 12,982
tags 42,820 13,233 28,312 5,165
posts 238,070 29,096 84,637 29,720
user-item sparsity 99.8746 98.6427 99.8334 98.6291
avg # items per user 191.5 151.5 64.0 178.0
avg # users per item 1.6 2.6 2.2 2.3
avg # tags per user 192.1 203.3 57.3 79.2
avg # users per tag 5.6 2.9 2.7 2.6
avg # tags per item 4.8 8.4 5.3 3.1
avg # items per tag 17.0 7.1 7.3 7.7

UI

D

R

items

items

users

users

tags

Σ

u 1

u K

i 1 i L itemsi 1 i L

users

u 1

u K

binarize

Figure 1: Representing the folksonomy graph as a 3D matrix.
The ratings matrix R is derived from the tripartite graph it-
self, and directly represents what items were added by which
users. Aggregation over the tag dimension of D gives us matrix
UI, containing the tag counts for each user-item pair. We can
obtain R by binarizing the values in UI..

obtain the K × L user-item matrix UI(uk, il) =
∑M

m=1 D(uk, il, tm),
specifying how many tags each user assigned to each item. Be-
cause we filtered our data sets to include only tagged content, our
ratings matrix R is the same as a binary version of UI. Similar to
the way we defined UI we can also aggregate the content of D over
the user and the item dimensions. We define the K×M user-tag ma-
trix UT(uk, tm) =

∑L
l=1 D(uk, il, tm), specifying how often each user

used certain tag to annotate his or her items. Individual elements
of UT are denoted by yk,m. We define the L × M item-tag matrix
IT(il, tm) =

∑K
k=1 D(uk, il, tm), indicating how many users assigned

a certain tag to an item. Individual elements of IT are denoted by
zl,m. We also define binary versions of UT and IT as UTbinary and
ITbinary. The row vectors of the UT and IT matrices represent the
user tag profiles dk and item tag profiles fl respectively. They list
what tags have been assigned by a user to his items, or to an item
by its users. Formally, the goal of each of the recommendation al-
gorithms discussed in this paper is to produce a ranking of all items
l that are not yet in the profile of the active user uk (i.e., xk,l = ∅).
To this end, we predict a score x̂k,l for each item that represents the
likelihood of that item being relevant for the active user. The final
recommendations for a user are generated by ranking all items il by
their predicted score x̂k,l.

3.1 Baseline Recommendation Algorithms
A common and well-understood source of information for rec-

ommendation is usage patterns of adding and rating items. The
class of algorithms that exploit such patterns for recommendation
purposes are called Collaborative Filtering algorithms (CF). In this
paper we focus on using and extending the k-Nearest Neighbor (k-
NN) algorithm. We pick the k-NN algorithm because it is a well
understood algorithm that can intuitively be extended to include
other information in addition to transaction patterns [7, 10]. There
are two flavors of the k-NN algorithm for CF: user-based filtering
and item-based filtering. In user-based filtering, we locate the users
most similar to the active users, and look among their items for new
recommendations. In item-based filtering, we locate the most simi-
lar items for each of the active user’s items and aggregate these into
a list of predicted items.

User-based Filtering.
In the first step of user-based filtering we calculate the similari-

ties between pairs of users to identify the most similar users for an
active user. Many different similarity metrics have been proposed
and evaluated over time, such as Pearson’s correlation coefficient
and cosine similarity [6]. We use the cosine similarity in our ex-
periments as it has often been used successfully on data sets with
implicit ratings [6, 19]. We calculate the cosine similarity between
the active user uk and another user ua on the user profile vectors uk

and ua as simcosine(uk, ua) =
uk ·ua
||uk || ||ua ||

.
The next step in user-based filtering is to determine the top N

similar users (or items) for user uk. We denote this set as the
Set of Similar Users SSU(uk), which are the top N users of the
set of all users ua, ranked by their cosine similarity. For each
user ua, we only consider those items that ua added to his pro-
file (xa,l , ∅). Using this set of nearest neighbors we generate
the final prediction scores x̂k,l for each unseen item il as x̂k,l =∑

ua∈SSU(uk) simcosine(uk, ua). Here, the predicted score of an item
il is the sum of the similarity values (between 0 and 1) of all N
nearest neighbors that actually added item il (i.e. xa,l , ∅).

A recurring observation from the literature about CF algorithms
is that universally liked items are not as useful for capturing the
similarity between users as less common items, see e.g. [6]. We
therefore perform two runs: the ‘vanilla’ base run described above
(u-bin-sim) and a run where the values in the user vectors are weighted
by the inverse user frequencies of the items (u-bin-idf-sim).

Item-based Filtering.
The item-based k-NN algorithm operates analogously to the user-

based filtering algorithm [19]. Instead of comparing users directly,

-11-

Table 2: Results of the folksonomic recommendation runs. Reported are the MAP scores as well as the optimal number of neighbors
N. Best-performing runs for each data group of approaches are printed in bold. Best-performing tag overlap runs for both user-
based and item-based are printed in bold. The percentage difference between the best baseline CF runs and the best tag overlap runs
are indicated after each type.

Runs
bookmarks articles

BibSonomy Delicious BibSonomy CiteULike
MAP N MAP N MAP N MAP N

Best baseline UB CF run 0.0277H 13 0.0046H 15 0.0865H 4 0.0757H 15
(u-bin-idf-sim) (u-bin-sim) (u-bin-sim) (u-bin-idf-sim)

ut-jaccard-sim 0.0070H 8 0.0015H 11 0.0459H 6 0.0449H 5
ut-dice-sim 0.0069O 6 0.0007H 6 0.0333O 4 0.0439H 2
ut-bin-sim 0.0102H 5 0.0017H 11 0.0332O 4 0.0452H 3
ut-tf-sim 0.0069O 2 0.0015O 25 0.0368H 4 0.0428H 8
ut-tfidf-sim 0.0018O 6 0.0013O 17 0.0169H 2 0.0400H 2
% Change over best UB CF run -63.2% -63.0% -46.9% -40.7%

Best baseline IB CF run 0.0244H 34 0.0027H 25 0.0737H 49 0.0887H 30
(i-bin-idf-sim) (i-bin-sim) (i-bin-idf-sim) (i-bin-idf-sim)

it-jaccard-sim 0.0370H 3 0.0083M 21 0.0909H 6 0.0810H 14
it-dice-sim 0.0317H 2 0.0089M 25 0.0963H 8 0.0814H 8
it-bin-sim 0.0334H 2 0.0101M 23 0.0868H 5 0.0779H 10
it-tf-sim 0.0324H 4 0.0100M 11 0.0823H 4 0.0607H 17
it-tfidf-sim 0.0287H 8 0.0058H 7 0.1100H 7 0.0789H 21
% Change over best IB CF run +51.6% +274.1% +49.3% -8.2%
% Change over best CF run +33.6% +119.6% +27.2% -8.2%

we try to identify the best recommendations for each of the items
in an active user’s profile. In other words, for item-based filter-
ing we calculate the similarities between the test items of the ac-
tive user uk and the other items that user has not yet added (so
xk,l = ∅). Similarity between two items il and ib is calculated on the
item profile vectors il and ib as simcosine(il, ib) =

il ·ib
||il || ||ib ||

. Next, we
identify the top N most similar items for each of the active user’s
items il separately. We define this neighborhood as the Set of Sim-
ilar Items SSI(il), where we select the top N of all items not al-
ready in the active user’s profile, ranked on their cosine similarity
simcosine(il, ib) to item il. Using this set of nearest neighbors we
generate the final prediction score x̂k,l for each unseen item il as
x̂k,l =

∑
ib∈SSI(il) simcosine(il, ib). Here, the predicted score is the sum

of the similarity values (between 0 and 1) of all the most similar
items that were added by user uk (i.e. xk,b , ∅). Analogous to
user-based filtering, we can also suppress the influence of the most
‘popular’ users, i.e. users that have added a disproportionately large
number of items to their profile, such as bots or spam users. We re-
fer to the item-based filtering runs weighted with the inverse item
frequency as i-bin-idf-sim and to the unweighted runs as i-bin-sim.

3.2 Tag Overlap Similarity
The folksonomies present in our four data sets each constitute an

extra layer of connections between user and items. We exploit this
extra layer for determining another type of similarity between users
or items. For instance, users that assign many of the same tags can
be seen as similar, and items that are often assigned the same tags
can also be seen as similar.

We restrict ourselves to comparing three common similarity met-
rics: Jaccard overlap, Dice’s coefficient, and the cosine similarity.
We use these similarities as the basis for item recommendation.
The only difference between this approach and the standard CF al-
gorithm is in the first step, where the similarities are calculated.
For user-based filtering, we calculate tag overlap on the UT ma-
trix or on the binarized version UTbinary, depending on the metric.
Both the Jaccard overlap and Dice’s coefficient are set-based met-

rics, which means we calculate them on the binary vectors from the
UTbinary matrix. The Jaccard Overlap simJaccard(dk, da) between two
users dk and da is defined as |dk∩da |

|dk∪da |
. Dice’s coefficient simDice(dk, da)

is defined as 2|dk∩da |

|dk |+|da |
. We refer to the user-based runs with the Jac-

card overlap and Dice’s coefficient as ut-jaccard-sim and ut-dice-
sim respectively. The cosine similarity is calculated in three dif-
ferent ways. First, we calculate it on the regular tag count vectors
dk and da from UT as ut-tf-sim, and on the binary vectors from the
UTbinary matrix as ut-bin-sim. In addition, we also experiment with
idf-weighting of the tags in the user tag count vectors as we did be-
fore. We refer to this run as ut-tfidf-sim. The item-based versions
of these similarity metrics are calculated on the IT and ITbinary ma-
trices. We refer to these five item-based runs as it-jaccard-sim,
it-dice-sim, it-bin-sim, it-tf-sim, and it-tfidf-sim.

3.3 Results & Discussion
Table 2 compares the results of our baseline CF runs that em-

ploy usage-based similarities to the runs that use overlap in tag-
ging behavior as a source of user and item similarity. We see that
the user-based filtering baseline outperforms item-based filtering
on three of four data sets; only on CiteULike does item-based filter-
ing work better, where this difference is also statistically significant
(p < 0.05). The other differences between user-based and item-
based filtering are not significant. There appears to be no clear or
statistically significant advantage to applying idf-weighting to the
profile vectors. An explanation for the advantage of user-based fil-
tering is that, according to Table 1, the average number of items per
user is much higher than the average number of users per item. Cal-
culating a meaningful overlap between user profile vectors could
therefore be more robust than between item profile vectors.

As for the results with tag overlap, we observe that item simi-
larities based on tag overlap work well for item-based filtering, as
three of our four data sets show considerable improvements over
the best CF baseline runs. Performance increases range from 27%
on Bibsonomy Articles to almost 120% on Delicious, but these
are only statistically significant on the Delicious data set. We see

-12-

the opposite trend for user-based filtering, where tag overlap re-
sults in significantly worse scores for almost all variants on all data
sets, with performance decreases ranging from 40% to 63%. This
means that using tag overlap in item-based filtering makes item-
based filtering outperform user-based filtering on all four data sets.
We believe that it is the reduction in sparsity from using tag overlap
that causes this difference in performance. On average, the number
of tags assigned to an item is 2.5 times higher than the number of
users who have added the item. This means that, on average, item
profile vectors from the IT matrix are less sparse than item pro-
file vectors from the UI matrix, making the possibility of overlap
between vectors more likely. Using more values in the similarity
calculation leads to a better estimate of the real similarity between
two items.

For user-based filtering this difference is not as well-pronounced:
in some data sets users have more items than tags on average, and
more tags than items in other data sets. This explains why we do
not see the same performance increase for the user-based filtering
runs based on tag overlap. The results of the different tag overlap
metrics tend to be close together and differences between them are
not statistically significant. Even though the best-performing simi-
larity metrics are dependent on the data set, we do see that the met-
rics operating on the binary vectors from the UTbinary and ITbinary

matrices are consistently among the top performers.
In general, it appears that bookmark recommendation is more

difficult than article recommendation. We believe this is due to a
difference in topic specificity. The Delicious and Bibsonomy Book-
marks data sets cover bookmarks of web pages, which encompass
many more topics than scientific articles do. Users of Delicious
and Bibsonomy Bookmarks can be expected to have more differ-
ent topics in their profile, making it more difficult to recommend
new, interesting bookmarks based on their profiles. We see evi-
dence for this explanation in the average number of unique tags per
user: 203.3 and 192.1 for Bibsonomy Bookmarks and Delicious
respectively, which is markedly higher than the 79.2 and 57.3 for
Bibsonomy Articles and CiteULike.

4. RECOMMENDATION USING METADATA
In addition to the folksonomic structure of the underlying net-

work, social bookmarking services also offer users the possibility
to annotate the content of their items with metadata. In this section
we investigate the role such metadata can play in recommending
interesting bookmarks or references. We propose two different ap-
proaches: content-based filtering and hybrid filtering. Before we
move on to describing these in Sections 4.1 and 4.2, we first take a
closer look at the metadata we have available.

In our approach we distinguish between item-intrinsic and item-
extrinsic metadata. Item-intrinsic metadata fields relate directly to
the content of the item being annotated. For the two data sets deal-
ing with web bookmarks these include DESCRIPTION, TAGS, TITLE,
and URL. The two scientific article data sets contain the additional
intrinsic fields ABSTRACT ,AUTHOR, BOOKTITLE, EDITOR, JOURNAL, NOTE,
and SERIES. The intuition behind assigning metadata fields to the
item-intrinsic category is that these fields can be used as stand-
alone sources for recommending other content. For instance, given
a certain paper from a user’s profile, papers with similar abstracts,
papers written by the same author, or papers published at the same
workshop are likely to be relevant recommendations. In contrast,
item-extrinsic metadata fields—such as MONTH or PAGES—cannot be
used to directly generate appropriate recommendations. We per-
formed experimental runs using the metadata of each of our intrin-
sic fields separately. In addition, we experimented with the combi-
nation of all intrinsic fields, and with runs that combined all intrin-

sic and extrinsic fields, resulting in a total of 34 runs per algorithm.
We did not test the extrinsic fields separately. Due to space restric-
tions we only report the results of the best runs for each algorithm.

4.1 Content-based Filtering
The first approach we propose is content-based filtering where

the focus is on properly representing the content in our social book-
marking data sets. Based on these representations our aim is to
construct an interest profile of an active user, and then use this
profile to rank-order the unseen items by similarity to the profile,
thereby approximating possible interest in those items. Figure 2
illustrates two different algorithms we propose for content-based
filtering: profile-centric matching and post-centric matching.

The difference between our two content-based filtering algorithms
is the level of aggregation. In our profile-centric matching ap-
proach, we collate all of a user’s assigned metadata into a single
user profile. The intuition here is that by aggregating all of the
metadata assigned by a user we can completely capture his or her
interests. Similarly, we construct item profiles that collate all of the
metadata assigned to those items by all users in the training set. We
then match the active user profiles against the item profiles on sim-
ilarity to produce a ranking of all items, as illustrated in the top half
of Figure 2. After removing the items already in the active user’s
profile, we are left with the final rank-ordered list of recommenda-
tions.

In contrast, post-centric matching operates on the level of indi-
vidual posts. We match each of an active user’s posts separately
against all the other posts of unseen items in the training set, as
illustrated in the bottom half of Figure 2. This leads to a list of
matching posts in order of similarity for each of the active user’s
posts. Since retrieval scores are not directly comparable between
runs, we normalize the original similarity scores simorg into [0,
1] using the maximum and minimum similarity scores simmax and
simmin according to simnorm =

simorg−simmin
simmax−simmin

. We then calculate a
rank-corrected sum of similarity scores for each item il according to
score(i) =

∑ simnorm(il)
log(rank(il))+1 . The final list of recommendations ranks

every unseen item il by their rank-corrected score score(il).

1A

2A

3A

2B

5B

1C

3C

4C

5C

1D

4D

3D

2D

test 
pairs

training 
pairs

Training item profilesAc:ve user profiles

1D 2

3 A C

(a) profile‐centric matching

similarity
matching 4 C

5 B C

Training postsAc:ve user's posts

(b) post‐centric matching

similarity
matching

1 D

1 D

1 D

2 D

. . .

2 A

3 A

2 B

2 A

. . .

Figure 2: Visualization of our two content-based filtering ap-
proaches to item recommendation for a small toy data set.

-13-

In both content-based filtering algorithms, we approach the rec-
ommendation process from an IR perspective and restrict ourselves
to measuring textual similarity. We use the open-source retrieval
toolkit Lemur to calculate the similarities between the different
user and item profiles. The Lemur toolkit5 implements different
retrieval methods based on language modeling [20]. Preliminary
experiments comparing language modeling with the OKAPI model
and a tf·idf approach suggested a language modeling approach with
Jelinek-Mercer smoothing as the best-performing retrieval method.
The language models we used are maximum likelihood estimates
of the unigram occurrence probabilities. We filter stopwords using
the SMART stopword list and do not perform stemming.

4.2 Hybrid Filtering
In addition to focusing solely on using the metadata for recom-

mendation, we also consider a hybrid approach that joins content-
based filtering and CF, in the hope of combining the best of both
worlds. Many different combination methods have been proposed
in earlier work [7]. In our hybrid filtering approach we view meta-
data in social bookmarking systems as another source of informa-
tion for locating the nearest neighbors of users and items in CF
algorithms. Figure 3 illustrates this approach. Instead of only look-
ing at the overlap in items that two users have in common when
calculating user similarities, we can use the overlap in the metadata
applied to items to determine the most similar neighbors. Users that
describe their profile items using the same terminology are likely
share the same interests, making them a good source of recom-
mendations. This is similar to the way we used the tag clouds of
users and items to calculate similarity between users and items in
the previous section. The user and item similarities we derive in
this way are then plugged into the standard memory-based CF al-
gorithms as described in Section 3.1. The resulting algorithm is a
feature-augmented hybrid of CF and content-based filtering.

1A

2A

3A

2B

5B

1C

3C

4C

5C

1D

4D

3D

2D

test 
pairs

training 
pairs

Training user profilesAc:ve user profiles

1D 2

(a) user‐based filtering

similarity
matching 2B 5

1A 2 3

1C 3 4 5

Training postsAc:ve user's posts

(b) item‐based filtering

similarity
matching

1 A C D

2 A B D

3 A C

4 C

5 B C

Figure 3: Visualization of our two hybrid filtering approaches
to item recommendation for a small toy data set.

Hybrid filtering also consists of two steps: (1) calculating the
most similar neighbors of the active user or his items, and (2) us-
ing those neighbors to predict item ratings for the active user. The
latter prediction step is performed in the same manner as described

5Available at http://www.lemurproject.org

earlier in Section 3.1. As in CF, with our hybrid filtering algorithms
we also distinguish between user-based filtering, where we gener-
ate recommendations by determining the most similar users, and
item-based filtering, where we recommend the items most similar
to the items in the active user’s profile. Like in Section 4.1, we ap-
proach the first step from an IR perspective and calculate the textual
similarities between users or items. For each user and each item we
generate user and item profile representations, constructed as fol-
lows. All of the metadata text of a user’s posts is collated into a
single “user profile” for that user. Similarly, for the item-based ap-
proach we create item profiles for each item by concatenating all of
the metadata assigned to that item by all the users who have the item
in their profile. This means that items are represented by their ag-
gregated community metadata and not just by a single user’s data.
Again, we used the open-source retrieval toolkit Lemur to calcu-
late the similarities between the different metadata representations,
with the same experimental settings as described in Section 4.1.

4.3 Results & Discussion
Table 3 contains the best runs for each of the four metadata-based

algorithms, as well as our best CF run from Section 3. What we see,
is that on three out of four data sets a recommendation algorithm
that uses metadata is better than the best CF run using data from the
folksonomy. All of our best metadata runs use the combined meta-
data fields. On their own, each field can be seen as an imperfect
representation of the items and users, but combined they alleviate
each others weak points and better represent the content than they
do separately. Only on the Delicious data set do all metadata-based
approaches perform significantly worse than the CF runs. Unfortu-
nately, we do not have an explanation for this. When we compare
the metadata-based approaches with each other, we see that most
differences are not statistically significant. On the Bibsonomy Ar-
ticles data set, the item-centric hybrid filtering approach is signif-
icantly better than the user-centric approach (p < 0.05). On the
CiteULike data set, the profile-centric approach also significantly
outperforms the post-centric and user-centric approaches.

In general, we observe that the profile-centric approach tends
to outperform the post-centric approach on three of our four data
sets. This improvement is statistically significant for the CiteULike
data set with an improvement of 117% (p < 10−6). Only on the
Delicious data set does post-centric matching perform significantly
better (p < 0.05). This advantage of the profile-centric approach
is strongest on the article data sets where the profile-centric ap-
proach performs best for 75% of the all runs with different fields.
In the case of hybrid filtering, the item-centric approach outper-
forms the user-centric approach on three of our four data sets. On
the CiteULike and Bibsonomy Articles data sets these differences
are statistically significant and especially large at 268% (p < 0.05)
and 112% respectively (p < 0.01).

While we do not have room to report the results of all individ-
ual intrinsic field runs, we can report on our general findings. For
all four approaches, the best-performing single fields are AUTHOR,
DESCRIPTION, TAGS, and TITLE, which provide the best individual
results on all four data sets for all approaches. This is not surpris-
ing, as these fields are the least sparsely filled of all the intrinsic
fields. In addition, these four fields are also aimed directly at de-
scribing the content of the items, more so than the conference or
journal titles or the editors. Another interesting observation is that
the TITLE field served as a better source of user and item similar-
ity on the article data sets than on the bookmark data sets. This is
because titles assigned to bookmarks are more variable than titles
assigned to scientific articles, leading to this performance gap.

-14-

http://www.lemurproject.org

Table 3: Results comparison of the best metadata-based runs with our best folksonomic CF runs. Reported are the MAP scores
as well as the optimal number of neighbors N where applicable. The best-performing runs are printed in bold. The percentage
difference between our best meta-data approaches and the best CF runs is listed in the bottom row.

Runs
bookmarks articles

BibSonomy Delicious BibSonomy CiteULike
MAP N MAP N MAP N MAP N

Best CF run 0.0370H 3 0.0101H 23 0.1100H 7 0.0887H 30
(it-jaccard-sim) (it-bin-sim) (it-tfidf-sim) (i-bin-idf-sim)

Profile-centric filtering 0.0402H - 0.0014H - 0.1279H - 0.0987H -
(all intrinsic) (TITLE) (all intrinsic) (all extrinsic)

Post-centric filtering 0.0259H - 0.0036O - 0.1190H - 0.0455H -
(all intrinsic) (TAGS) (all intrinsic) (all extrinsic)

User-centric hybrid filtering 0.0218H 2 0.0039O 13 0.0410H 2 0.0608H 2
(URL) (all intrinsic) (TITLE) (TITLE)

Item-centric hybrid filtering 0.0399H 11 0.0017H 8 0.1510H 21 0.0746H 21
(TAGS) (all intrinsic) (all intrinsic) (TAGS)

% Change over best CF run +8.6% -61.3% +37.2% +11.3%

5. RELATED WORK

5.1 Folksonomic Recommendation
One of the first approaches to recommendation for social book-

marking websites was presented by [12], who proposed a graph-
based algorithm called FolkRank. They generated 2D projections
of the tripartite graph and proposed a random walk model similar
to PageRank [17] that uses the steady state node probabilities as
the basis for ranking their recommendations. Clements et al. [9]
also proposed a random walk model for item recommendation, but
combine ratings information with tagging information into a single
model. They also incorporated self-transition probabilities in the
matrix, and used the walk length as an algorithm parameter.

There have also been several adaptations of memory-based algo-
rithms that include information about the tags assigned by users to
items. Approaches that resemble our use of tag overlap for calculat-
ing similarities between users and items include [2], [16], and [22].
Tso-Sutter et al. [23] proposed a novel tag-aware k-NN algorithm
for item recommendation. When calculating the user and item sim-
ilarities they include the tags as additional items and users respec-
tively. They then calculate cosine similarity on these extended pro-
file vectors and fuse together the predictions of the user-based and
item-based filtering runs. This fused model is able to effectively
capture the relationship between users, items, and tags.

Symeonidis et al. [21] were among the first to propose a model-
based approach to incorporating tagging information in recommen-
dation. They propose an item recommendation approach that per-
forms tensor decomposition on the third-order folksonomy tensor.
By performing higher-order SVD, they approximate weights for
each user-item-tag triple in the data set, which can then be used
to support item recommendation. They compared their algorithm
to the FolkRank algorithm [12], and found that tensor decomposi-
tion outperforms the latter. Wetzker et al. [24] took a Probabilistic
Latent Semantic Analysis (PLSA) approach, which assumes a la-
tent lower dimensional topic model. They extended PLSA by es-
timating the topic model from both user-item occurrences as well
as item-tag occurrences, and then linearly combined the output of
the two models. They tested their approach on a large crawl of
Delicious, and found that it significantly outperforms a popularity-
based algorithm.

5.2 Exploiting Metadata for Recommendation
While a significant amount of research has focused on Collabo-

rative Filtering for recommending interesting items, there has also
been considerable work on content-based filtering, which can be
seen as an extension of the work done on information filtering.
Content-based filtering has been applied to many different domains.
Early work on content-based filtering included the NewsWeeder
system by Lang et al. [14], which used the words contained in
newsgroup messages as its features. Alspector et al. [1] compared
a CF approach to movie recommendation with content-based filter-
ing. For their content-based component they built metadata repre-
sentations of all movies using fields such as directory, genre, and
awards, and used linear regression and classification and regression
trees to learn user profiles and rank-order the items for those users.
They found that CF performed significantly better than the content-
based methods, but noted that this was likely due to the poor feature
set they used. Mooney et al. [15] describe Libra, a content-based
book recommender system. They crawled the book metadata from
the Amazon website and represented each book as a bag-of-words
vector. They then used a Naive Bayes classifier to learn user pro-
files and to rank-order unseen books for the user.

We are not the first to suggest the combination of CF with content-
based filtering, as the advantages of both approaches are largely
complementary. CF is the more mature of the two approaches and
works best in a situation with a stable set of items and a dense user
base. Content-based filtering methods are better at dealing with
sparse, dynamic domains such as news filtering, and are better at
recommending for non-average users. Basu et al. [3] were among
the first to propose a hybrid recommender system that used both
collaborative and content features to represent the users and items.
The collaborative features captured what movies a user likes and
the content features included metadata fields such as actors, direc-
tors, genre, titles, and tag lines. They used Ripper, a rule-based
machine learning algorithm to predict which items are interesting,
and found that the combination of collaborative and content-based
features produced the best results. Claypool et al. [8] presented a
weighted hybrid recommender system that calculated a weighted
average of the output of two separate CF and content-based filter-
ing components. The CF component received a stronger weight
as the data sets grows denser, gradually phasing out the influence
of the content-based component. They did not find any significant
differences between the performance of the separate components
or the combined version. Baudisch [4] proposed an innovative ap-
proach to incorporating metadata into CF algorithms by joining the
metadata descriptions to the user-item matrix as additional users.

-15-

6. CONCLUSIONS
In this paper we have presented a range of collaborative and

content-based approaches to item recommendation on social book-
marking websites. Our algorithms were evaluated on four realistic
data sets of different domains, and compared to two external, state-
of-the-art approaches. Let us step back now and take stock of our
findings. Tags represent an additional layer of information in the
folksonomy that binds users and items together. These tags can
be used successfully to improve the recommendations of standard
nearest-neighbor algorithms, but this depends on the algorithm. For
item-based filtering, using tags for calculating item similarity alle-
viates sparsity and results in better performance. At the user level,
however, tags do not offer the same benefits.

Metadata can also be used successfully to generate item recom-
mendations for social bookmarking websites. While the best ap-
proach seems to be dependent on the data set and the domain, ag-
gregating all of the intrinsic metadata at the user and item level
results in algorithms that outperform the algorithms using only in-
formation from the folksonomy.

For future work, we intend to examine the benefits of data fusion.
The tag-aware fusion approach by Tso-Sutter et al. [23] demon-
strates the potential of fusing together the outputs of different rec-
ommendations algorithms and representations.

Acknowledgments
The work described in this paper was funded by SenterNovem / the
Dutch Ministry of Economics Affairs as part of the IOP-MMI À
Propos project, and by the Netherlands Organization for Scientific
Research as part of the NWO Vernieuwingsimpuls program.

7. REFERENCES
[1] J. Alspector, A. Koicz, and N. Karunanithi. Feature-based and

Clique-based User Models for Movie Selection: A Compar-
ative Study. User Modeling and User-Adapted Interaction, 7
(4):279–304, 1997.

[2] S. Amer-Yahia, A. Galland, J. Stoyanovich, and C. Yu. From
del.icio.us to x.qui.site: Recommendations in Social Tagging
Sites. In Proceedings of SIGMOD ’08, pp. 1323–1326, New
York, NY, USA, 2008. ACM.

[3] C. Basu, H. Hirsh, and W. W. Cohen. Recommendation as
Classification: Using Social and Content-Based Information
in Recommendation. In Proceedings of the Fifteenth National
Conference on Artificial Intelligence, pp. 714–720, 1998.

[4] P. Baudisch. Joining Collaborative and Content-based Filter-
ing. In Proceedings of the ACM CHI Workshop on Interacting
with Recommender Systems. ACM Press, May 1999.

[5] T. Bogers and A. Van den Bosch. Using Language Modeling
for Spam Detection in Social Reference Manager Websites.
In R. Aly, C. Hauff, I. den Hamer, D. Hiemstra, T. Huibers,
and F. de Jong, editors, Proceedings of the 9th Belgian-Dutch
Information Retrieval Workshop (DIR 2009), pp. 87–94, En-
schede, February 2009.

[6] J. S. Breese, D. Heckerman, and C. Kadie. Empirical Anal-
ysis of Predictive Algorithms for Collaborative Filtering. In
Proceedings of the Fourteenth Annual Conference on Uncer-
tainty in Artificial Intelligence, pp. 43–52, 1998.

[7] R. Burke. Hybrid Recommender Systems: Survey and Exper-
iments. User Modeling and User-Adapted Interaction, 12(4):
331–370, 2002.

[8] M. Claypool, A. Gokhale, T. Miranda, P. Murnikov, D. Netes,
and M. Sartin. Combining Content-Based and Collaborative

Filters in an Online Newspaper. In Proceedings of ACM SI-
GIR Workshop on Recommender Systems, August 1999.

[9] M. Clements, A. P. de Vries, and M. J. Reinders. Optimizing
Single Term Queries using a Personalized Markov Random
Walk over the Social Graph. In Proceedings of ESAIR ’08,
2008.

[10] J. L. Herlocker, J. A. Konstan, A. Borchers, and J. Riedl. An
Algorithmic Framework for Performing Collaborative Filter-
ing. In Proceedings of SIGIR ’99:, pp. 230–237, New York,
NY, USA, 1999. ACM.

[11] J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T.
Riedl. Evaluating Collaborative Filtering Recommender Sys-
tems. ACM Transactions on Information Systems, 22(1):5–53,
2004.

[12] A. Hotho, R. Jäschke, C. Schmitz, and G. Stumme. Infor-
mation Retrieval in Folksonomies: Search and Ranking. In
Proceedings of ESWC ’06, 2006.

[13] A. Hotho, R. Jäschke, C. Schmitz, and G. Stumme.
BibSonomy: A Social Bookmark and Publication Sharing
System. In Proceedings of the Conceptual Structures Tool
Interoperability Workshop at ICCS 2006, pp. 87–102, 2006.

[14] K. Lang. NewsWeeder: Learning to Filter Netnews. In Pro-
ceedings of ICML ’95, pp. 331–339, San Mateo, CA, USA,
1995. Morgan Kaufmann.

[15] R. J. Mooney and L. Roy. Content-Based Book Recommend-
ing Using Learning for Text Categorization. In Proceedings
of DL ’00, pp. 195–204, New York, NY, 2000. ACM Press.

[16] R. Nakamoto, S. Nakajima, J. Miyazaki, and S. Uemura. Tag-
Based Contextual Collaborative Filtering. In Proceedings of
the 18th IEICE Data Engineering Workshop, 2007.

[17] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageR-
ank Citation Ranking: Bringing Order to the Web. Technical
report, Stanford Digital Library Technologies Project, 1998.

[18] G. Salton and C. Buckley. Term-Weighting Approaches in
Automatic Text Retrieval. Information Processing & Man-
agement, 24(5):513–523, 1988.

[19] B. Sarwar, G. Karypis, J. Konstan, and J. Reidl. Item-Based
Collaborative Filtering Recommendation Algorithms. In Pro-
ceedings of WWW ’01, pp. 285–295, New York, NY, USA,
2001. ACM.

[20] T. Strohman, D. Metzler, and W. B. Croft. Indri: A Language
Model-based Search Engine for Complex Queries. In Pro-
ceedings of ICIA ’05, May 2005.

[21] P. Symeonidis, M. Ruxanda, A. Nanopoulos, and
Y. Manolopoulos. Ternary Semantic Analysis of So-
cial Tags for Personalized Music Recommendation. In
Proceedings of ISMIR ’08, pp. 219–224, 2008.

[22] M. Szomszor, C. Cattuto, H. Alani, K. O’Hara, A. Baldas-
sarri, V. Loreto, and V. D. Servedio. Folksonomies, the Se-
mantic Web, and Movie Recommendation. In Proceedings of
the ESWC Workshop on Bridging the Gap between Semantic
Web and Web 2.0, 2007.

[23] K. H. L. Tso-Sutter, L. B. Marinho, and L. Schmidt-Thieme.
Tag-aware Recommender Systems by Fusion of Collabora-
tive Filtering Algorithms. In Proceedings of SAC ’08, pp.
1995–1999, New York, NY, 2008. ACM.

[24] R. Wetzker, W. Umbrath, and A. Said. A Hybrid Approach
to Item Recommendation in Folksonomies. In Proceedings of
ESAIR ’09, pages 25–29, New York, NY, USA, 2009. ACM.

-16-

Improving FolkRank With
Item-Based Collaborative Filtering

Jonathan Gemmell, Thomas Schimoler, Maryam Ramezani,
Laura Christiansen, Bamshad Mobasher

Center for Web Intelligence
School of Computing, DePaul University

Chicago, Illinois, USA
{jgemmell, tschimo1, mramezani, lchris10, mobasher}@cdm.depaul.edu

ABSTRACT
Collaborative tagging applications allow users to annotate online
resources. The result is a complex tapestry of interrelated users, re-
sources and tags often called a folksonomy. Folksonomies present
an attractive target for data mining applications such as tag recom-
menders. A challenge of tag recommendation remains the adapta-
tion of traditional recommendation techniques originally designed
to work with two dimensional data. To date the most successful
recommenders have been graph based approaches which explicitly
connects all three components of the folksonomy.

In this paper we speculate that graph based tag recommenda-
tion can be improved by coupling it with item-based collaborative
filtering. We motive this hypothesis with a discussion of informa-
tional channels in folksonomies and provide a theoretical explana-
tion of the additive potential for item-based collaborative filtering.
We then provided experimental results on hybrid tag recommenders
built from graph models and other techniques based on popularity,
user-based collaborative filtering and item-based collaborative fil-
tering.

We demonstrate that a hybrid recommender built from a graph
based model and item-based collaborative filtering outperforms its
constituent recommenders. Furthermore the inability of the other
recommenders to improve upon the graph-based approach suggests
that they offer information already included in the graph based
model. These results confirm our conjecture. We provide exten-
sive evaluation of the hybrids using data collected from three real
world collaborative tagging applications.

1. INTRODUCTION
Collaborative tagging has emerged as a popular method for or-

ganizing and sharing online content with user-defined keywords.
Delicious1, Flickr2 and Last.fm3 are among the most popular des-
tinations on the Web allowing users to annotate bookmarks, digital

1delicious.com
2www.flickr.com
3www.last.fm

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
RecSys’09, October 22–25, 2008, New York City, New York.
Copyright 2009 ACM 978-1-60558-093-7/08/10 ...$5.00.

photographs and music respectively. Other less popular tagging
applications serve niche communities enabling users to tag blogs,
business documents or scholarly articles.

At the heart of collaborative tagging is the post; a user describes
a resource with a set of tags. A collection of posts results in a com-
plex network of interrelated users, resources and tags commonly
referred to as a folksonomy [16]. Users are able to navigate this
network free from a rigid conceptual hierarchy.

Despite the freedom users enjoy, the size of a folksonomy often
hampers the userŠs exploration. Data mining applications such as
recommenders can assist the user by reducing a burdensome num-
ber of items to a smaller collection related the user’s interests. In
this work we focus on tag recommendation, the suggestion of tags
during the annotation process.

Tag recommendation reduces the cognitive effort from genera-
tion to recognition. Users are therefore encouraged to tag more
frequently, apply more tags to a resource, reuse common tags and
use tags the user had not previously considered. User error is re-
duced by eliminating capitalization inconsistencies, punctuation er-
rors, misspellings and other discrepancies. The final result is a
cleaner denser dataset that is useful in its own right or for further
data mining applications.

Despite the richness offered by folksonomies, they also present
unique challenges for tag recommenders. Traditional recommen-
dation strategies, often developed to work with two dimensional
data, must be adapted to work with the three dimensional nature
of folksonomies. Otherwise they risk disregarding potentially use-
ful information. To date the most successful tag recommenders are
graph-based models, which exploits the user-defined links between
the users, resources and tags.

In this work we propose augmenting the graph based approach
with item-based collaborative filtering. We offer a discussion of in-
formation channels in folksonomies to motivate this proposal. The
graph based model covers the user-resource, user-tag, and resource-
tag channels. Item-based collaborative filtering, on the other hand,
focuses on tags previously applied by the user to resources simi-
lar to the query resource. It therefore includes resource-resource
information not explicitly contained in the graph model. Addition-
ally, the user-tag information utilized by item-based collaborative
filtering is more oriented to query resource.

We construct hybrid tag recommenders composed of the graph
models and other techniques including popularity models, user-
based collaborative filtering and item-based collaborative filtering.
The graph based recommender coupled with item-based collabo-
rative filtering produces better results than either produce alone,
strengthening our theory that that item-based collaborative filtering
contains information that is absent in the graph based model. More-

-17-

jannach
Rechteck

over the other hybrids do not improve upon the graph based model
suggesting that the information they contain are already adequately
represented by the graph based approach.

The rest of this paper is organized as follows. In Section 2 we
describe related works. A brief survey of the tag recommenders we
employ in our experiments is given in Section 3. The use of hybrid
recommenders is motivated in Section 4 where we discuss infor-
mational channels in folksonomies. Section 5 details how tag rec-
ommenders may be compounded to produce hybrid recommenders.
Our experimental evaluation is presented in Section 6, including a
description of our datasets, our methodology and a discussion of
our findings. Finally in Section 7 we present our conclusions and
lay a foundation for future work.

2. BACKGROUND AND RELATED WORK
The term folksonomy was coined by [28], a play on folk and

taxonomy. While the term is new, [29] argues that collaborative
tagging in merely a renaissance of manual indexing. However, the
scope and connectivity of the Internet permits tagging to rise to a
level heretofore unrealized.

In [16] the attractiveness of tagging is outlined: serendipitous
browsing, a low entry cost, utilizing the wisdom of the crowd, and
a sense of community. Moreover, he argues that tagging allows ob-
jects to be categorized under multiple tags, unfettered from tradi-
tional taxonomies. He also discusses two obstacles: tag ambiguity
in which a tag has several meanings and tag redundancy in which
several tags have the same meaning.

As collaborative tagging applications have gained in popular-
ity researchers have explored and characterized the tagging phe-
nomenon. In [15] and [10] the authors studied the information
dynamics of Delicious, one of the most popular folksonomies. The
authors discussed how tags have been used by individual users over
time and how tags for an individual resource stabilize over time. In
[15] the authors provide an overview of the phenomenon and offer
reasons why both folksonomies and taxonomies will have a place
in the future of information access.

There have been many recent research investigations into recom-
mendation within folksonomies. Unlike traditional recommender
systems which have a two-dimensional relation between users and
items, tagging systems have a three dimensional relation between
users, tags and resources. Recommender systems can be used to
recommend each of the dimensions based on one or two of the other
dimensions. In [26] the authors apply user-based and item-based
collaborative filtering to recommend resources in a tagging system
and uses tags as an extension to the user-item matrices. Tags are
used as context information to recommend resources in [19] and
[18].

In [13] user-based collaborative filtering is compared to a graph-
based recommender based on the PageRank algorithm for tag rec-
ommendation. The authors in [11] use association rules to rec-
ommend tags and introduce an entropy-based metric to define how
predictable a tag is. In [14] the title of a resource, the posts of a
resource and the user’s vocabulary are used to recommend tags.

User-defined tags and co-occurrence are employed by [24] to
recommend tags to users on Flickr. The assumption is that the user
has already assigned a set of tags to a photo and the recommender
uses those tags to recommend more tags. The authors in [6] have
completed a similar study and introduce a classification for tag rec-
ommendation. Probabilistic models have been used in recommen-
dation in folksonomies in [20] and [30]. Moreover, [20] uses Prob-
abilistic Latent Semantic Analysis for resource discovery and [30]
uses single aspect PLSA for tag recommendation.

Previously, in [8, 9], we demonstrated how tag clusters serving

as coherent topics can aid in the personalization of search and navi-
gation. Further support for the utility of clustering is offered in [4]
where improvement in search through clustering is theorized. In
[7] we adapted K-Nearest Neighbor for tag recommendation and
showed incorporating user tagging habits into recommendation can
improve K-Nearest Neighbor.

General criteria for a good tagging system including high cover-
age of multiple channels, high popularity and least-effort are pre-
sented in [31]. They categorize tags as content-based tags, context-
based tags, attribute tags, subjective tags, and organizational tags
and use a probabilistic method to recommend tags. In [2] the au-
thors propose a classification algorithm for tag recommendation.
Semantic tag recommendation systems in the context of a seman-
tic desktop are explored in [1]. Clustering to make real-time tag
recommendation is developed in [25].

3. TAG RECOMMENDATION
Here we first provide a model of folksonomies, then review sev-

eral common recommendation techniques which we employ in our
evaluation. A folksonomy can be described as a four-tuple:

D = 〈U, R, T, A〉 (1)

where, U is a set of users; R is a set of resources; T is a set of
tags; and A is a set of annotations, represented as user-tag-resource
triples:

A ⊆ {〈u, r, t〉 : u ∈ U, r ∈ R, t ∈ T} (2)

A folksonomy can, therefore, be viewed as a tripartite hyper-
graph [17] with users, tags, and resources represented as nodes and
the annotations represented as hyper-edges connecting a user, a tag
and a resource.

Aggregate projections of the data can be constructed, reducing
the dimensionality but sacrificing information [22]. The relation
between resources and tags, RT , can be formulated such that each
entry, RT (r, t), is the weight associated with the resource, r, and
the tag, t. This weight may be binary, merely showing that one or
more users have applied that tag to the resource. In this work we
assume RT (r, t) to be the number of users that have applied t to
the r:

RTtf (r, t) = |{a = 〈u, r, t〉 ∈ A : u ∈ U}| (3)

Analogous two-dimensional projections can be constructed for
UT in which the weights correspond to users and tags, and UR in
which the weights correspond to users and resources.

Many authors have attempted to exploit the data model for rec-
ommendation in folksonomies. In traditional recommendation al-
gorithms the input is often a user, u, and the output is a set of items,
I . Tag recommendation differs in that the input is both a user and
a resource. The output remains a set of items, in this case a set
of recommended tags, Tr . Given a user-resource pair, the recom-
mendation set is constructed by calculating a weight for each tag,
w(u, r, t), and recommending the top n tags.

3.1 Popularity Based Approaches
We consider two popularity based models which rely on the fre-

quency a tag is used. PopRes ignores the user and relies on the
popularity of a tag within the context of a particular resource. We
define the resource based popularity measure as:

w(u, r, t) =
|{a = 〈u, r, t〉 ∈ A : u ∈ U}|

|{a = 〈u, r, t〉 ∈ A : u ∈ U, t ∈ T}| (4)

-18-

PopUser, on the other hand, ignores the resource and focuses on
the frequency of a tag within the user profile. We define the user
based popularity measure as:

w(u, r, t) =
|{a = 〈u, r, t〉 ∈ A : r ∈ R}|

|{a = 〈u, r, t〉 ∈ A : r ∈ R, t ∈ T}| (5)

Popularity based recommenders require little online computa-
tion. Models are built offline and can be incrementally updated.
However both these models focus on a single channel of the folk-
sonomy and may not incorporate otherwise relevant information
into the recommendation.

3.2 User-Based Collaborative Filtering
User-based K-nearest neighbor is a commonly used recommen-

dation algorithm in Information Retrieval that can be modified for
use in folksonomies. Applications may model users by recency,
authority, linkage or vector space models. In this work we focus on
the vector space model [21] and describe the user as a vector over
either the tag space or the resource space.

KNN_UT models the user, u, as a vector over the set of tags
where the weight in each dimension corresponds to the occurrence
of the tag in the user profile as it is defined by the two dimensional
projection UT (u, t). Other methods may be used to model the
user, such as a vector over the set of resources or a combination
of tags and resources. Several techniques may be used to calculate
the similarity between vectors such as Jaccard similarity or cosine
similarity [27]. In this work we rely on cosine similarity.

Using the similarity measure a neighborhood, N , of the k most
similar users is constructed such that they have all previously an-
notated the query resource, r. A weight for each tag is calculated
as:

w(u, r, t) =

∑N
n sim(u, n) ∗ d(n, r, t)

k
(6)

where d(n, r, t) is 1 if the neighbor, n, has annotated the query
resource, r, with the tag t. Otherwise it is 0.

Traditional user-based collaborative filtering requires a compar-
ison between the query user and every other user. However, since
the adapted algorithm considers only those users that have anno-
tated the query resource, the number of similarities to calculate is
drastically reduced. The popularity of resources in folksonomies
follows the power law and the great majority of resources will ben-
efit from this reduced reduction in computation, while a few will
require additional computational effort. As a result the algorithm
scales well with large datasets.

However, since the algorithm relies on the collaboration of other
users it may be the case that a tag cannot be recommended because
it does not appear in a neighbor’s profile. While the personalization
offered by user-based filtering is an important component for the
recommender, it lacks the ability to reflect the habits and patterns
of the larger crowd.

3.3 Item-Based Collaborative Filtering
KNN_RT models resources as a vector over the tag space. Give

a resource and a tag, we define the weight as the entry of the two
dimensional projection, RT (r, t), the number of times r has been
tagged with t. When a user selects a resource to annotate, the co-
sine similarity between it and every resource in the user profile is
calculated. A neighborhood of the k most similar resources, S, is
then constructed. We then define the item-based collaborative fil-
tering measure as:

Figure 1: Informational channels of a folksonomy.

w(u, r, t) =

∑S
s sim(s, r) ∗ d(u, s, t)

k
(7)

where d(u, s, t) will equal 1 if the user has applied t to s and 0
otherwise. This recommender focuses entirely on the user’s tagging
habits. Unlike the user-based filtering methods, it may be able to
identify tags that are common to the user but rarely used by others.
However, it lacks the ability to discover relevant tags from other
users. Depending on the size of the user profile, this recommender
will also scale well to larger datasets, particularly if the resource-
resource similarity matrix if calculated offline.

3.4 FolkRank
FolkRank was proposed in [12]. It computes a PageRank vector

from the tripartite graph of the folksonomy. This graph is generated
by regarding U ∪ R ∪ T as the set of vertices. Edges are defined
by the three two-dimensional projections of the hyper-graph, RT ,
UR and UT .

If we regard the adjacency matrix of this graph, W , (normalized
to be column-stochastic), a damping factor, d, and a preference vec-
tor, p, then we iteratively compute the PageRank vector, w, in the
usual manner: w = dAw + (1− d)p.

However due to the symmetry inherent in the graph, this basic
PageRank may focus too heavily on the most popular elements.
The FolkRank vector is taken as a difference between two compu-
tations of PageRank: one with and one without a preference vector.
Tag recommendations are generated by biasing the preference vec-
tor towards the query user and resource [13]. These elements are
given a substantial weight while all other elements have uniformly
small weights.

PageRank has proven to be one of the top performing tag recom-
menders. However, it imposes steep computational costs.

4. INFORMATIONAL CHANNELS
OF FOLKSONOMIES

The model of a folksonomy suggests several informational chan-
nels which may be exploited by data mining applications such as
tag recommenders. The relation between users, resources and tags
generate a complex network of interrelated items as shown in Fig-
ure 1.

The channel between resources and tags reveals a highly descrip-
tive model of the resources. The accumulation of many users’ opin-
ions (often numbered in the thousands or millions) results in a rich-

-19-

Figure 2: The effect of k in KNN_UT on recall and precision for
a recommendation set of 5 tags. Users are modeled as a vector
over the tag space.

ness which taxonomies are unable to approximate. Conversely the
tags themselves are characterized by the resources to which they
have been assigned.

As users annotate resource with tags they define their interests in
as much as they describe a resource. The user-tag channel therefore
reveals the users’ interests and provides opportunities for data min-
ing algorithms to offer a high degree of personalization. Likewise
a user may be defined by the resources which he has annotated as
in the user-resource channel.

These primary channels can be used to produce secondary in-
formational channels. The user-user channel can be constructed
by modeling users as a vector of tags or as a vector of resources
and applying a similarity measure such as cosine similarity. Many
variations exist. However the result reveals a network of users that
can be explored directly or incorporated into further data mining
approaches. The resource-resource and tag-tag channels provide
similar utility, presenting navigational opportunities for users to ex-
plore similar resources or neighborhoods of tags.

The success of tag recommenders hinge on their ability to incor-
porate all of these informational channels. A simple recommender
such as PopRes focuses only on the tag-resource channel, whereas
PopUser includes only the information between tags and users.

Collaborative filtering techniques include additional channels but
increase the computational overhead. KNN_UT discovers a set of
neighbors, thereby covering the user-user channel. It then focuses
on tags those neighbors applied to the query resource covering the
user-resource and resource-tag channels. FolkRank, on the other
hand, explicitly defines the relation between users, resources and
tags in its adjacency matrix. While FolkRank has proven to be
among most effective tag recommenders, augmenting it with algo-
rithms that incorporate complimentary informational channels may
improve its performance.

5. HYBRID RECOMMENDERS
The multiple informational channels of folksonomies present an

attractive target for hybrid recommenders. Hybrids combine sev-
eral recommenders together to produce a new recommender. The
constituent recommenders are freed from the burden of the cover-
ing all the available informational channels and may instead focus
on only a few. The hybrid then ties these recommenders together.
A successful hybrid creates a synergistic blend of its constituent
parts producing superior results that they could not achieve alone.

In this paper we focus on weighted hybrid recommenders [5]

which combine pairs of recommenders in a linear model. Each
model is trained separately. Given a user, u, and a resource, r, the
hybrid queries both components for each tag in the folksonomy.
The results is W (u, r, t) which contains the weights for all tags.
In order to ensure that weight assignments for each recommenda-
tion approach are on the same scale, we normalize the weights in
W (u, r, t) to 1 producing W ′(u, r, t).

Originally, these weights were used to select the top n items for
the recommendation set. In this case, however, the weights are
combined in a linear model as:

w(u, r, t) = β ∗ w′a(u, r, t) + α ∗ w′b(u, r, t) (8)

where β = 1−α. These coefficients are used to control the contri-
bution of the two recommenders. When α is set to 0, recommender
a acts alone. In the case that α is set to 0.5, each recommender
contributes equally to the final weight. For each hybrid, α must
be empirically tuned to achieve the maximum synergy between the
components. The tags are then resorted by the new weight, and the
top n tags are recommended for the annotation.

6. EXPERIMENTAL EVALUATION
In this section we describe the methods used to gather and pre-

process our datasets. Our testing methodology is outlined. We pro-
vide a discussion of how we tuned variables for each algorithm and
describe the experiments on the weighted hybrid recommenders.
Finally, we discuss our observations.

6.1 Datasets

Folksonomy Delicious (5%) Citeulike Bibsonomy
Users 7,665 2,051 357

Resources 15,612 5,376 1,738
Tags 5,746 3,343 1,573
Posts 720,788 42,278 19,909

Annotations 2,762,235 105,873 54,848

Table 1: Datasets

We provide an extensive evaluation of the hybrid recommenders
using data from three real collaborative tagging applications: Deli-
cious, Citeulike, and Bibsonomy.

6.1.1 P -Core Processing
By P -core processing users, resources and tags are removed

from the dataset in order to produce a residual dataset that guaran-
tees each user, resource and tag occur in at least p posts [3]. Here
we define a post to include a user, a resource, and every tag the user
has applied to the resource.

By removing infrequent users, resources and tags noise in the
data is reduced. Uncommon items whether they be tags used by
only a few users, unpopular resources, or inactive users are elim-
inated from consideration. Because of their scarcity these are the
very items likely to confound recommenders. Moreover by elim-
inating infrequent items the size of the dataset is dramatically re-
duced allowing the application of data mining techniques that might
otherwise be computationally impractical.

6.1.2 Delicious
Delicious is a popular collaborative tagging application in which

users annotate URLs. On 10/19/2008, 198 of the most popular tags
were taken from the user interface. For each of these tags the 2,000

-20-

Figure 3: The effect of alpha on the hybrid recommenders on the Delicious, Citeulike and Bibsonomy datasets. Results are shown
using recall and precision on a recommendation set of five tags.

most recent annotations including the contributors of the annota-
tions were collected. The social network for these contributors was
explored recursively collecting 524,790 usernames.

From 10/20/2008 to 12/15/2008 the complete profiles of the users
were collected. Each user profile consisted of a collection of anno-
tations including the resource, tags and date of the original book-
mark. The top 100 most prolific users were visually inspected;
twelve were removed from the data because their annotation count
was many orders of magnitude larger than other users and were
therefore suspected to be Web-bots.

Due to memory and time constraints, 5% of the user profiles was
randomly selected. Still this dataset remains far larger than either
the following Bibsonomy or Citeulike datasets. Experiments on
larger samplings reveal near identical trends for several of the tag

recommendation strategies. Some tag recommendation techniques
such as FolkRank are so computational intensive that larger sam-
plings of the data are not feasible. In order to best compare the
recommenders, the 5% sampling was used on all reported experi-
ments. A P -core of 20 was taken from the sample and is reported
in Table 1.

6.1.3 Citeulike
Citeulike is a popular online tool used by researchers to manage

and discover scholarly references. They make their dataset freely
available to download4. On 2/17/2009 the most recent snapshot
was downloaded. The data contains anonymous user ids and posts
for each user including resources, the date and time of the posting

4www.citeulike.org/faq

-21-

and the tags applied to the resource. A P -core of 5 was taken. The
characteristics of the dataset are described in Table 1.

6.1.4 Bibsonomy
This dataset was provided by Bibsonomy5 for use in the Euro-

pean Conference on Machine Learning and Principles and Prac-
tice of Knowledge Discovery in Databases (ECML-PKDD) 2009
Challenge. Bibsonomy was originally launched as a collaborative
tagging application allowing users to organize and share scholarly
references. It has since expanded its scope allowing users to anno-
tate URLs.

The data includes all public bookmarks and publication posts
of Bibsonomy until 2009-01-01. The data was cleaned by remov-
ing all characters which are neither numbers nor letters from tags.
Additionally the system tags imported, public, systemimported, nn
and systemunfiled where removed. A P -core of 5 was used. Table
1 relates the features of the dataset.

6.2 Experimental Methodology
We have adopted the test methodology as described in [13]. In

this approach, called LeavePostOut, a single post is randomly re-
moved from each user’s profile. The training set is then comprised
of the remaining posts, while the test set contains one post per user.
Each test case consists of a user, u, a resource, r, and all the tags
the user has applied to that resource. These tags, Th, are analogous
to the holdout set commonly used in Information Retrieval. The
tag recommendation algorithms accept the user-resource pair and
return an ordered set of recommended tags, Tr .

For evaluation we adopt the common recall are precision mea-
sures as is common in Information Retrieval. Recall measures the
percentage of items in the holdout set that appear in the recommen-
dation set. It is a measure of completeness and is defined as:

r = |Th ∩ Tr|/|Th| (9)

Precision measures the percentage of items in the recommenda-
tion set that appear in the holdout set. It measures the exactness of
the recommendation algorithm and is defined as:

p = |Th ∩ Tr|/|Tr| (10)

For each evaluation metric the average value is calculated across
all test cases.

6.3 Experimental Results
Here we present our experimental results beginning with the tun-

ing of variables. The experiments with user-based collaborative fil-
tering require the tuning of k, the number of neighbors.

Figure 2 shows the relation between k and the evaluation met-
rics recall and precision for a recommendation set of size 5. The
Delicious dataset was used for this experiment. As k increases so
does recall and precision. However this improvement suffers from
diminishing returns until a k of 50 offers little more benefit than
a k of 20. This trend was observed for K-Nearest Neighbor ex-
periments in the other two datasets as well. As such, all KNN_UT
experiments were completed using a k of 20.

Item-based collaborative filtering also requires the tuning of k,
in this case the number of similar resources in the user profile to
include in the neighborhood. After empirical analysis we found 15
to produce the best performance on all datasets.

Figure 3 shows the tuning of α for the hybrid recommenders.
Each hybrid is a linear combination of FolkRank and one of the
5www.bibsonomy.org

Figure 4: A comparison of tag recommender techniques in De-
licious.

Figure 5: A comparison of tag recommender techniques in Ci-
teulike.

Figure 6: A comparison of tag recommender techniques in Bib-
sonomy.

other four recommenders. The left hand side of each graph shows
the hybrid recommenders when α is set to 0 in which case FolkRank
dominates the hybrid. As α increases more weight is given to the
other recommenders until finally when α reaches 1, FolkRank plays
no part in the recommendation.

For all datasets, item-based collaborative filtering contributes to
recall and precision of its hybrid. For example in the Delicious
experiment when α is set to 0.4, recall for a recommendation set
of five tags is 6% higher than FolkRank achieves alone and 13%
higher than KNN_RT achieves alone.

-22-

In the Delicious experiments, a hybrid built with PopUser offers
a slight improvement, while it has a more dramatic improvement on
Citeulike. These observations reveal that the personalization of the
user-tag channel strongly incorporated into KNN_RT and PopUser
offers information lacking in FolkRank. While PopUser boosts all
of the user’s tags, KNN_RT focuses on tags related to the resource
being annotated accounted for its increased performance. On the
other hand PopRes does not appear to provide any additional benefit
to FolkRank. Indeed, FolkRank contains this information in the
utilization of the RT matrix.

These two results reveal that the weights given to the query re-
source and query user in the FolkRank algorithm achieve different
results. The weight applied to the resource immediately activates
tags strongly associated with the resource. The result is similar to
that achieved in PopRes, hence PopRes offers little assistance to its
hybrid. However, the weight applied to the query user disperses
through the graph activating all of the user’s tags relevant or irrele-
vant to user’s present context. KNN_RT, on the other hand, focuses
on tags applied to resources similar to the query. Hence, it includes
the resource-resource channel missing in FolkRank. The hybrid is
able to be personalized but also be more context specific.

KNN_UT does not appear to offer any additional information
that FolkRank did not already contain, even though it includes user-
resource information in the neighborhood selection, user-resource
information in the cosine similarity and resource-tag information in
the recommendation step. This reveals that the way in which the in-
formational channels is equally important. Additionally KNN_UT
selects neighbors that are similar to the query user, utilizing the
user-user channel. However, this channel does not appear to be
beneficial to tag recommendation.

After analysis of the effect of α on the hybrids we selected the
best α for the FolkRank-KNN_RT hybrid. For Delicious we used an
α of 0.4. For Citeulike and Bibsonomy used an α of 0.5. Figures
4 through 6 compare tag recommenders along with the hybrid. Re-
call and precision are plotted for recommendation sets of size one
through ten. For all datasets the hybrid outperforms its constituent
parts.

We also observe a difference in the effect that constituent recom-
menders have across the datasets. Delicious users tag Web pages
and their topics cover a wide array of topics. Citeulike users tag
scholarly articles and often focus on their area of expertise. In
fact we can see in Figures 4 and 5 the dramatic difference between
PopRes and PopUser.

In Delicious PopRes outperforms PopUser, whereas in Citeu-
like the opposite is true. The user’s focus on a narrow subject
area in Citeulike make the user-tag channel a informative predictor,
whereas the topic variety in the profiles of Delicious users make the
resource-tag channel more reliable.

This analysis is underscored by the success KNN_RT hybrid has
on the Delicious datasets where PopUser hybrid fairs poorly. Be-
cause KNN_RT focuses on those tags applied to resources similar
to the query resource it offers context appropriate tags. In Citeu-
like, where users have a narrow focus, this context provides little
additional benefit and the PopUser hybrid performs nearly as well
as the KNN_RT hybrid. Bibsonomy users tags both citations and
web pages; its results fall between those of the other two datasets.

7. CONCLUSIONS
We have demonstrated that tag recommenders may be combined

to form weighted hybrids that perform better than either performs
alone. Moreover FolkRank one of the most successful tag recom-
menders to date can be augmented with item-based collaborative
filtering to produce superior results. The resource-resource and per-

sonalized user-resource channels covered by item-based collabora-
tive filtering compliment the channels utilized by FolkRank. The in-
ability of other recommenders to improve upon FolkRank provides
evidence that FolkRank sufficiently incorporates the informational
channels covered by those recommenders.

Future work will involve investigating alternative hybrid tag rec-
ommenders. New recommenders that cover other informational
channels will be considered. Finally, alternative methods for hy-
bridizing recommenders will be explored.

8. ACKNOWLEDGMENTS
This work was supported in part by the National Science Foun-

dation Cyber Trust program under Grant IIS-0430303 and a grant
from the Department of Education, Graduate Assistance in the Area
of National Need, P200A070536.

9. REFERENCES
[1] B. Adrian, L. Sauermann, and T. Roth-Berghofer. Contag: A

semantic tag recommendation system. In T. Pellegrini and
S. Schaffert, editors, Proceedings of I-Semantics’ 07, pages
pp. 297–304. JUCS, 2007.

[2] P. Basile, D. Gendarmi, F. Lanubile, and G. Semeraro.
Recommending smart tags in a social bookmarking system.
In Bridging the Gep between Semantic Web and Web 2.0
(SemNet 2007), pages 22–29, 2007.

[3] V. Batagelj and M. Zaveršnik. Generalized cores. Arxiv
preprint cs/0202039, 2002.

[4] G. Begelman, P. Keller, and F. Smadja. Automated Tag
Clustering: Improving search and exploration in the tag
space. Proceedings of the Collaborative Web Tagging
Workshop at WWW, Volume 6, 2006.

[5] R. Burke. Hybrid recommender systems: Survey and
experiments. User Modeling and User Adapted Interaction,
12(4):331–370, 2002.

[6] N. Garg and I. Weber. Personalized, interactive tag
recommendation for flickr. In RecSys ’08: Proceedings of the
2008 ACM conference on Recommender systems, pages
67–74, New York, NY, USA, 2008. ACM.

[7] J. Gemmell, T. Schimoler, M. Ramezani, and B. Mobasher.
Adapting k-nearest neighbor for tag recommendation in
folksonomies. Intelligent Techniques for Web Personalization
& Recommender Systems, 2009.

[8] J. Gemmell, A. Shepitsen, B. Mobasher, and R. Burke.
Personalization in Folksonomies Based on Tag Clustering.
Intelligent Techniques for Web Personalization &
Recommender Systems, 2008.

[9] J. Gemmell, A. Shepitsen, B. Mobasher, and R. Burke.
Personalizing navigation in folksonomies using hierarchical
tag clustering. In Proceedings of the 10th international
conference on Data Warehousing and Knowledge Discovery.
Springer, 2008.

[10] S. A. Golder and B. A. Huberman. Usage patterns of
collaborative tagging systems. Journal of Information
Science, 32(2):198, 2006.

[11] P. Heymann, D. Ramage, and H. Garcia-Molina. Social tag
prediction. In SIGIR ’08: Proceedings of the 31st annual
international ACM SIGIR conference on Research and
development in information retrieval, pages 531–538, New
York, NY, USA, 2008. ACM.

[12] A. Hotho, R. Jaschke, C. Schmitz, and G. Stumme.
Information retrieval in folksonomies: Search and ranking.
Lecture Notes in Computer Science, 4011:411, 2006.

-23-

[13] R. Jaschke, L. Marinho, A. Hotho, L. Schmidt-Thieme, and
G. Stumme. Tag Recommendations in Folksonomies.
LECTURE NOTES IN COMPUTER SCIENCE, 4702:506,
2007.

[14] M. Lipczak. Tag recommendation for folksonomies oriented
towards individual users. In Proceedings of the
ECML/PKDD 2008 Discovery Challenge Workshop, part of
the European Conference on Machine Learning and
Principles and Practice of Knowledge Discovery in
Databases, 2008.

[15] G. Macgregor and E. McCulloch. Collaborative tagging as a
knowledge organisation and resource discovery tool. Library
Review, 55(5):291–300, 2006.

[16] A. Mathes. Folksonomies-Cooperative Classification and
Communication Through Shared Metadata. Computer
Mediated Communication, (Doctoral Seminar), Graduate
School of Library and Information Science, University of
Illinois Urbana-Champaign, December, 2004.

[17] P. Mika. Ontologies are us: A unified model of social
networks and semantics. Web Semantics: Science, Services
and Agents on the World Wide Web, 5(1):5–15, 2007.

[18] R. Y. Nakamoto, S. Nakajima, J. Miyazaki, S. Uemura, and
H. Kato. Investigation of the effectiveness of tag-based
contextual collaborative filtering in website recommendation.
In Advances in Communication Systems and Electrical
Engineering, pages 309–318. Springerlink, 2008.

[19] R. Y. Nakamoto, S. Nakajima, J. Miyazaki, S. Uemura,
H. Kato, and Y. Inagaki. Reasonable tag-based collaborative
filtering for social tagging systems. In WICOW ’08:
Proceeding of the 2nd ACM workshop on Information
credibility on the web, pages 11–18, New York, NY, USA,
2008. ACM.

[20] A. Plangprasopchok and K. Lerman. Exploiting social
annotation for automatic resource discovery. CoRR,
abs/0704.1675, 2007.

[21] G. Salton, A. Wong, and C. Yang. A vector space model for
automatic indexing. Communications of the ACM,
18(11):613–620, 1975.

[22] C. Schmitz, A. Hotho, R. Jaschke, and G. Stumme. Mining
association rules in folksonomies. In Proc. IFCS 2006
Conference, pages 261–270. Springer, 2006.

[23] B. Sigurbjörnsson and R. van Zwol. Flickr tag
recommendation based on collective knowledge. pages
327–336, 2008.

[24] B. Sigurbjörnsson and R. van Zwol. Flickr tag
recommendation based on collective knowledge. In WWW
’08: Proceeding of the 17th international conference on
World Wide Web, pages 327–336, New York, NY, USA,
2008. ACM.

[25] Y. Song, Z. Zhuang, H. Li, Q. Zhao, J. Li, W.-C. Lee, and
C. L. Giles. Real-time automatic tag recommendation. In
SIGIR ’08: Proceedings of the 31st annual international
ACM SIGIR conference on Research and development in
information retrieval, pages 515–522, New York, NY, USA,
2008. ACM.

[26] K. H. L. Tso-Sutter, L. B. Marinho, and L. Schmidt-Thieme.
Tag-aware recommender systems by fusion of collaborative
filtering algorithms. In SAC ’08: Proceedings of the 2008
ACM symposium on Applied computing, pages 1995–1999,
New York, NY, USA, 2008. ACM.

[27] C. Van Rijsbergen. Information Retrieval.
Butterworth-Heinemann Newton, MA, USA, 1979.

[28] T. Vander Wal. Folksonomy definition and wikipedia.
vanderwal. net, 2005.

[29] J. Voss. Tagging, Folksonomy & Co-Renaissance of Manual
Indexing? Arxiv preprint cs/0701072, 2007.

[30] R. Wetzker, W. Umbrath, and A. Said. A hybrid approach to
item recommendation in folksonomies. In ESAIR ’09:
Proceedings of the WSDM ’09 Workshop on Exploiting
Semantic Annotations in Information Retrieval, pages 25–29,
New York, NY, USA, 2009. ACM.

[31] Z. Xu, Y. Fu, J. Mao, and D. Su. Towards the semantic web:
Collaborative tag suggestions. Collaborative Web Tagging
Workshop at WWW2006, Edinburgh, Scotland, May, 2006.

-24-

A Tag Recommender System Exploiting
User and Community Behavior

Cataldo Musto
Dept. of Computer Science

University of Bari ‘Aldo Moro’
Italy

cataldomusto@di.uniba.it

Fedelucio Narducci
Dept. of Computer Science

University of Bari ‘Aldo Moro’
Italy

narducci@di.uniba.it

Marco De Gemmis
Dept. of Computer Science

University of Bari ‘Aldo Moro’
Italy

degemmis@di.uniba.it

Pasquale Lops
Dept. of Computer Science

University of Bari ‘Aldo Moro’
Italy

lops@di.uniba.it

Giovanni Semeraro
Dept. of Computer Science

University of Bari ‘Aldo Moro’
Italy

semeraro@di.uniba.it

ABSTRACT
Nowadays Web sites tend to be more and more social: users
can upload any kind of information on collaborative plat-
forms and can express their opinions about the content they
enjoyed through textual feedbacks or reviews. These plat-
forms allow users to annotate resources they like through
freely chosen keywords (called tags). The main advantage
of these tools is that they perfectly fit user needs, since the
use of tags allows organizing the information in a way that
closely follows the user mental model, making retrieval of
information easier. However, the heterogeneity characteriz-
ing the communities causes some problems in the activity of
social tagging: someone annotates resources with very spe-
cific tags, other people with generic ones, and so on. These
drawbacks reduce the exploitation of collaborative tagging
systems for retrieval and filtering tasks. Therefore, systems
that assist the user in the task of tagging are required. The
goal of these systems, called tag recommenders, is to suggest
a set of relevant keywords for the resources to be annotated.
This paper presents a tag recommender system called STaR
(Social Tag Recommender system). Our system is based on
two assumptions: 1) the more two or more resources are sim-
ilar, the more they share common tags 2) a tag recommender
should be able to exploit tags the user already used in order
to extract useful keywords to label new resources. We also
present an experimental evaluation carried out using a large
dataset gathered from Bibsonomy.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing: Indexing methods; H.3.3 [Information
Storage and Retrieval]: Information Search and Retrieval:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

Information filtering

General Terms
Algorithms, Experimentation

Keywords
Recommender Systems, Web 2.0, Collaborative Tagging Sys-
tems, Folksonomies

1. INTRODUCTION
We are assisting to a transformation of the Web towards

a more user-centric vision called Web 2.0. By using Web 2.0
applications users are able to publish auto-produced con-
tents such as photos, videos, political opinions, reviews, hence
they are identified as Web prosumers: producers + consumers
of knowledge. Recently the research community has thor-
oughly analyzed the dynamics of tagging, which is the act
of annotating resources with free labels, called tags. Many
argue that, thanks to the expressive power of folksonomies
[17], collaborative tagging systems are very helpful to users
in organizing, browsing and searching resources. This hap-
pens because, in contrast to systems where information about
resources is only provided by a small set of experts, the
model of collaborative tagging systems takes into account
the way individuals conceive the information contained in a
resource [18], so they perfectly fit user needs and user mental
model. Nowadays almost all Web 2.0 platforms embed tag-
ging: we can cite Flickr1, YouTube2, Del.icio.us3, Last.fm4,
Bibsonomy5 and so on. These systems provide heteroge-
neous contents (photos, videos, musical habits, etc.), but
they all share a common core: they let users to post new re-
sources and to annotate them with tags. Besides the simple
act of annotation, the tagging of resources has also a key so-
cial aspect; the connection between users, resources and tags
generates a tripartite graph that can be easily exploited to

1http://www.flickr.com
2http://www.youtube.com
3http://delicious.com/
4http://www.last.fm/
5http://www.bibsonomy.org/

-25-

jannach
Rechteck

analyze the dynamics of collaborative tagging systems. For
example, users that label the same resource by using the
same tags might have similar tastes and items labeled with
the same tags might share common characteristics.

Undoubtedly the power of tagging lies in the ability for
people to freely determine the appropriate tags for a re-
source [10]. Since folksonomies do not rely on a predefined
lexicon or hierarchy they have the main advantage to be
fully free, but at the same time they generate a very noisy
tag space, really hardly to exploit for retrieval or recom-
mendation tasks without performing any form of processing.
Golder et. al. [4] identified three major problems of col-
laborative tagging systems: polysemy, synonymy, and level
variation. Polysemy refers to situations where tags can have
multiple meanings: for example a resource tagged with the
term bat could indicate a news taken from an online sport
newspaper or a Wikipedia article about nature. We refer to
synonymy when multiple tags share a single meaning: for
example we can have simple morphological variations (such
as ’AI’,’artificial intelligence’ and so on to identify a scien-
tific publication about Artificial Intelligence) but also lexical
relations (like resources tagged with ‘arts’ versus ‘cultural
heritage’). At last, the phenomenon of tagging at different
levels of abstraction is defined as level-variation. This hap-
pens when people annotate the same web page, containing
for example a recipe for roast turkey with the tag ‘roast-
turkey’ but also with a simple ‘recipe’.

Since these problems are of hindrance to completely ex-
ploit the expressive power of folksonomies, in the last years
many tools have been developed to assist the user in the
task of tagging and to aid at the same time the tag con-
vergence [3]: we refer to them as tag recommenders. These
systems work in a very simple way:

1. a user posts a resource;

2. depending on the approach, the tag recommender ana-
lyzes some information related to the resource (usually
metadata or a subset of the relations in the aforemen-
tioned tripartite graph);

3. the tag recommender processes this information and
produces a list of recommended tags;

4. the user freely chooses the most appropriate tags to
annotate the resource.

Clearly, the more these recommended tags match the user
needs and her mental model, the more she will use them to
annotate the resource. In this way we can rapidly speed up
the tag convergence aiding at the same time in filtering the
noise of the complete tag space.
This paper presents the tag recommender STaR. When de-
veloping the model, we tried to point out two concepts:

• resources with similar content should be annotated
with similar tags;

• a tag recommender needs to take into account the pre-
vious tagging activity of users, increasing the weight
of the tags already used to annotate similar resources.

In this work, we identify two main aspects in the tag rec-
ommendation task: first, each user has a typical manner
to label resources; second, similar resources usually share
common tags.

The paper is organized as follows. Section 2 analyzes re-
lated work. Section 3 explains the architecture of the system
and how the recommendation approach is implemented. The
experimental evaluation carried out is described in Section
4, while conclusions and future work are drawn in the last
section.

2. RELATED WORK
Usually the works in the tag recommendation area are

broadly divided into three classes: content-based, collabora-
tive and graph-based approaches.

In the content-based approach, exploiting some Informa-
tion Retrieval-related techniques, a system is able to ex-
tract relevant unigrams or bigrams from the text. Brooks et.
al [2], for example, develop a tag recommender system that
exploits TF/IDF scoring [13] in order to automatically sug-
gests tags for a blog post. In [5] is presented a novel method
for key term extraction from text documents. Firstly, ev-
ery document is modeled as a graph which nodes are terms
and edges represent semantic relationship between them.
These graphs are then partitioned using communities de-
tection techniques and weighted exploiting information ex-
tracted from Wikipedia. The tags composing the most rel-
evant communities (a set of terms related with the topic of
the resource) are then suggested to the user.

AutoTag [11] is one of the most important systems imple-
menting the collaborative approach for tag recommendation.
It presents some analogies with collaborative filtering meth-
ods: as in the collaborative recommender systems the rec-
ommendations are generated based on the ratings provided
by similar users (called neighbors), in AutoTag the system
suggests tags based on the other tags associated with sim-
ilar posts. Firstly, the tool exploits some IR techniques in
order to find similar posts and extracts the tags they are
annotated with. All the tags are then merged, building a
folksonomy that is filtered and re-ranked. The top-ranked
tags are finally suggested to the user, who selects the most
appropriate ones to attach to the post.

TagAssist [15] extends the AutoTags’ approach introduc-
ing some preprocessing step (specifically, a lossless compres-
sion over existing data) in order to improve the quality of
the recommendations. The core of this approach is repre-
sented by a a Tag Suggestion Engine (TSE) which leverages
previously tagged posts providing appropriate suggestions
for new content.

Marinho [9] investigates the user-based collaborative ap-
proach for tag recommendation. The main outcome of this
work shows that users with a similar tag vocabulary tend to
tag alike, since the method seems to produce good results
when applied on the user-tag matrix.

The problem of tag recommendation through graph-based
approaches has been firstly addressed by Jäschke et al. in [7].
The key idea behind their FolkRank algorithm is that a re-
source which is tagged by important tags from important
users becomes important itself. So, they build a graph
whose nodes mutually reinforces themselves by spreading
their weights. They compared some recommendation tech-
niques including collaborative filtering, PageRank and FolkRank,
showing that the FolkRank algorithm outperforms other ap-
proaches. Furthermore, Schmitz et al. [14] proposed associ-
ation rule mining as a technique that might be useful in the
tag recommendation process.

In literature we can find also other methods (called hy-

-26-

brid), which try to integrate two of more sources of knowl-
edge (mainly, content and collaborative ones) in order to
improve the quality of recommended tags.

Heymann et. al [6] present a tag recommender that ex-
ploits at the same time social knowledge and textual sources.
They produce recommendations exploiting both the HTML
source code (extracting anchor texts and page texts) and the
annotations of the community. The effectiveness of this ap-
proach is also confirmed by the use of a large dataset crawled
from del.icio.us for the experimental evaluation.

Lipczak in [8] proposes a similar hybrid approach. Firstly,
the system extracts tags from the title of the resource. Af-
terwards, it performs an analysis of co-occurrences, in or-
der to expand the sets of candidate tags with the tags that
usually co-occur with terms in the title. Finally, tags are
filtered and re-ranked exploiting the informations stored in
a so-called ”personomy”, the set of the tags previously used
by the user.

Finally, in [16] the authors proposed a model based on
both textual contents and tags associated with the resource.
They introduce the concept of conflated tags to indicate a set
of related tags (like blog, blogs, ecc.) used to annotate a re-
source. Modeling in this way the existing tag space they are
able to suggest various tags for a given bookmark exploiting
both user and document models.

3. STAR: A SOCIAL TAG RECOMMENDER
SYSTEM

Following the definition introduced in [7], a folksonomy
can be described as a triple (U, R, T) where:

• U is a set of users;

• R is a set of resources;

• T is a set of tags.

We can also define a tag assignment function tas: U ×
R → T .

So, a collaborative tagging system is a platform composed
of users, resources and tags that allows users to freely assign
tags to resources, while the tag recommendation task for a
given user u ∈ U and a resource r ∈ R can be described as
the generation of a set of tags tas(u, r) ⊆ T according to
some relevance model. In our approach these tags are gen-
erated from a ranked set of candidate tags from which the
top n elements are suggested to the user.
STaR (Social Tag Recommender) is a content-based tag rec-
ommender system, developed at the University of Bari. The
inceptive idea behind STaR is to improve the model imple-
mented in systems like TagAssist [15] or AutoTag [11].

Although we agree that similar resources usually share
similar tags, in our opinion Mishne’s approach presents two
important drawbacks:

1. the tag re-ranking formula simply performs a sum of
the occurrences of each tag among all the folksonomies,
without considering the similarity with the resource to
be tagged. In this way tags often used to annotate
resources with a low similarity level could be ranked
first;

2. the proposed model does not take into account the
previous tagging activity performed by users. If two

users bookmarked the same resource, they will receive
the same suggestions since the folksonomies built from
similar resources are the same.

We will try to overcome these drawbacks, by proposing an
approach firstly based on the analysis of similar resources ca-
pable also of leveraging the tags already selected by the user
during her previous tagging activity, by putting them on the
top of the tag rank. Figure 1 shows the general architecture
of STaR. The recommendation process is performed in four
steps, each of which is handled by a separate component.

3.1 Indexing of Resources
Given a collection of resources (corpus) with some textual

metadata (such as the title of the resource, the authors, the
description, etc.), STaR firstly invokes the Indexer module
in order to perform a preprocessing step on these data by
exploiting Apache Lucene6. Obviously, the kind of metadata
to be indexed is strictly dependant on the nature of the
resources. For example, supposing to recommend tags for
bookmarks, we could index the title of the web page and the
extended description provided by users, while for BibteX
entries, we could index the title of the publication and the
abstract. Let U be the set of users and N the cardinality
of this set, the indexing procedure is repeated N + 1 times:
we build an index for each user (Personal Index) storing the
information on the resources she previously tagged and an
index for the whole community (Social Index) storing the
information about all the tagged resources by merging the
singles Personal Indexes.

Following the definitions presented above, given a user
u ∈ U we define PersonalIndex(u) as:

PersonalIndex(u) = {r ∈ R|∃t ∈ T : tas(u, r) = t} (1)

where tas is the tag assignment function tas: U × R → T
which assigns tags to a resource annotated by a given user.
SocialIndex represents the union of all the user personal in-
dexes:

SocialIndex =

N⋃

i=1

PersonalIndex(ui) (2)

3.2 Retrieval of Similar Resources
Next, STaR can take into account users requests in or-

der to produce personalized tag recommendations for each
resource. First, every user has to provide some information
about the resource to be tagged, such as the title of the Web
page or its URL, in order to crawl the textual metadata as-
sociated on it.

Next, if the system can identify the user since she has
already posted other resources, it exploits data about her
(language, the tags she uses more, the number of tags she
usually uses to annotate resources, etc.) in order to refine
the query to be submitted against both the Social and Per-
sonal indexes stored in Lucene. We used as query the title
of the web page (for bookmarks) or the title of the publica-
tion (for BibTeX entries). Obviously before submitting the
query we processed it by deleting not useful characters and
punctuation.

In order to improve the performances of the Lucene Query-
ing Engine we replaced the original Lucene Scoring function

6http://lucene.apache.org

-27-

Figure 1: Architecture of STaR

with an Okapi BM25 implementation7. BM25 is nowadays
considered as one of the state-of-the art retrieval models by
the IR community [12].

Let D be a corpus of documents, d ∈ D, BM25 returns
the top-k resources with the highest similarity value given
a resource r (tokenized as a set of terms t1 . . . tm), and is
defined as follows:

sim(r, d) =
∑m

i=1

nr
ti

k1((1−b)+b∗l)+nr
ti

∗ idf(ti) (3)

where nr
ti

represents the occurrences of the term ti in the
document d, l is the ratio between the length of the resource
and the average length of resources in the corpus. Finally, k1

and b are two parameters typically set to 2.0 and 0.75 respec-
tively, and idf(ti) represents the inverse document frequency
of the term ti defined as follows:

idf(ti) = log
N + df(ti) + 0.5

df(ti) + 0.5
(4)

where N is the number of resources in the collection and
df(ti) is the number of resources in which the term ti occurs.

Given user u ∈ U and a resource r, Lucene returns the
resources whose similarity with r is greater or equal than
a threshold β. To perform this task Lucene uses both the
PersonalIndex of the user u and the SocialIndex. More for-
mally:

P Res(u, q) = {r ∈ PersonalIndex(u)|sim(q, r) ≥ β}

S Res(q) = {r ∈ SocialIndex|sim(q, r) ≥ β}

Figure 2 depicts an example of the retrieving step. In
this case the target resource is represented by Gazzetta.it,
one of the most famous Italian sport newspaper. Lucene
queries the SocialIndex and returns as the most similar re-
sources an online newspaper (Corrieredellosport.it) and the
official web site of an Italian Football Club (Inter.it). The

7http://nlp.uned.es/ jperezi/Lucene-BM25/

Figure 2: Retrieval of Similar Resources

PersonalIndex, instead, returns another online newspaper
(Tuttosport.com). The similarity score returned by Lucene
has been normalized.

3.3 Extraction of Candidate Tags
The role of the Tag Extractor is to produce as output

the list of the so-called ”candidate tags” (namely, the tags
considered as ’relevant’ by the tag recommender). In this
step the system gets the most similar resources returned
by the Apache Lucene engine and builds their folksonomies
(namely, the tags they have been annotated with). Next, it
produces the list of candidate tags by computing for each
tag from the folksonomy a score obtained by weighting the
similarity score returned by Lucene with the normalized oc-
currence of the tag. If the Tag Extractor also gets the list of
the most similar resources from the user PersonalIndex, it
will produce two partial folksonomies that are merged, as-
signing a weight to each folksonomy in order to boost the

-28-

tags previously used by the user.
Formally, for each query q (namely, the resource to be

tagged), we can define a set of tags to recommend by build-
ing two sets: candTagsp and candTagss. These sets are
defined as follows:

candTagsp(u, q) = {t ∈ T |t = TAS(u, r) ∧ r ∈ P Res(u, q)}

candTagss(q) = {t ∈ T |t = TAS(u, r) ∧ r ∈ S Res(q) ∧ u ∈ U}

In the same way we can compute the relevance of each tag
with respect to the query q as:

relp(t, u, q) =

∑
r∈P Res(u,q) nt

r ∗ sim(r, q)

nt
(5)

rels(t, q) =

∑
r∈S Res(q) nt

r ∗ sim(r, q)

nt
(6)

where nt
r is the number of occurrences of the tag t in the an-

notation for resource r and nt is the sum of the occurrences
of tag t among all similar resources.

Finally, the set of Candidate Tags can be defined as:

candTags(u, q) = candTagsp(u, q) ∪ candTagss(q) (7)

where for each tag t the global relevance can be defined as:

rel(t, q) = α ∗ relp(t, q) + (1 − α) ∗ rels(t, q) (8)

where α (PersonalTagWeight) and (1−α) (SocialTagWeight)
are the weights of the personal and social tags respectively.

Figure 3 depicts the procedure performed by the Tag Ex-
tractor : in this case we have a set of 4 Social Tags (Newspa-
per, Online, Football and Inter) and 3 Personal Tags (Sport,
Newspaper and Tuttosport). These sets are then merged,
building the set of Candidate Tags. This set contains 6 tags
since the tag newspaper appears both in social and personal
tags. The system associates a score to each tag that indi-
cates its effectiveness for the target resource. Besides, the
scores for the Candidate Tags are weighted again according
to SocialTagWeight (α) and PersonalTagWeight (1−α) val-
ues (in the example, 0.3 and 0.7 respectively), in order to
boost the tags already used by the user in the final tag rank.
Indeed, we can point out that the social tag ‘football’ gets
the same score of the personal tag ‘tuttosport’, although its
original weight was twice.

3.4 Tag Recommendation
Finally, the last step of the recommendation process is

performed by the Filter. It removes from the list of can-
didate tags the ones not matching specific conditions, such
as a threshold for the relevance score computed by the Tag
Extractor. Obviously, the value for the threshold and the
maximum number of tags to be recommend is strictly de-
pendent from the training data.

Formally, given a user u ∈ U , a query q and a thresh-
old value γ, the goal of the filtering component is to build
rec(u, q) defined as follows:

rec(u, q) = {t ∈ candTags(u, q)|rel(t, q) > γ}

Table 1: Results comparing the Lucene original scor-
ing function with BM25

Scoring Resource Pr Re F1

Original bookmark 25.26 29.67 27.29
BM25 bookmark 25.62 36.62 30.15

Original bibtex 14.06 21.45 16.99
BM25 bibtex 13.72 22.91 17.16

Original overall 16.43 23.58 19.37
BM25 overall 16.45 26.46 20.29

In the example in Figure 3, setting a threshold γ = 0.20,
the system would suggest the tags sport and newspaper.

4. EXPERIMENTAL EVALUATION
We designed two different experimental sessions to evalu-

ate the performance of the tag recommender. In the first ses-
sion we performed a comparison between the original scoring
function of Lucene and a novel BM25 implementation, while
the second was carried out to tune the system parameters.

4.1 Description of the dataset
We designed the experimental evaluation by exploiting a

dataset gathered from Bibsonomy. It contains 263,004 book-
mark posts and 158,924 BibTeX entries submitted by 3,617
different users. For each of the 235,328 different URLs and
the 143,050 different BibTeX entries were also provided some
textual metadata (such as the title of the resource, the de-
scription, the abstract and so on).

We evaluated STaR by comparing the real tags (namely,
the tags a user adopts to annotate an unseen resource) with
the suggested ones. The accuracy was finally computed us-
ing classical IR metrics, such as Precision, Recall and F1-
Measure. Precision (Pr) is defined as the number of relevant
recommended tags divided by the number of recommended
tags. Recall (Re) is defined as the number of relevant rec-
ommended tags divided by the total number of relevant tags
available. The F1-measure is computed by the following for-
mula:

F1 =
(2 ∗ Pr ∗ Re)

Pr + Re
(9)

4.2 Experimental Session 1
Firstly, we tried to evaluate the predictive accuracy of

STaR comparing difference scoring function (namely, the
Lucene original one and the aforementioned BM25 imple-
mentation). We performed the same steps previously de-
scribed, retrieving the most similar items using the two men-
tioned similarity functions and comparing the tags suggested
by the system in both cases. Results are presented in Table
1.

In general, there is an improvement by adopting BM25
with respect to the Lucene original similarity function. We
can note that BM25 improved the both the recall (+ 6,95%
for bookmarks, +1,46% for BibTeXs entries) and the F1
measure (+ 2,86% for bookmarks, +0,17% for BibTeXs en-
tries).

-29-

Figure 3: Description of the process performed by the Tag Extractor

4.3 Experimental Session 2
Next we designed a second experimental evaluation in or-

der to compare the predictive accuracy of STaR with differ-
ent combinations of system parameters. Namely:

• the maximum number of similar documents retrieved
by Lucene;

• the value of α for the PersonalTagWeight and Social-
TagWeight parameters;

• the threshold γ to establish whether a tag is relevant;

• which fields of the target resource use to compose the
query;

• the best scoring function between Lucene standard one
and Okapi BM25.

First, tuning the number of similar documents to retrieve
from the PersonalIndex and SocialIndex is very important,
since a value too high can introduce noise in the retrieval
process, while a value too low can exclude documents con-
taining relevant tags. By analyzing the results returned by
some test queries, we decided to set this value between 5
and 10, depending on the training data.

Next, we tried to estimate the values for PersonalTag-
Weight (PTW) and the SocialTagWeight (STW). An higher
weight for the Personal Tags means that in the recommenda-
tion process the systems will weigh more the tags previously
used by the target user, while an higher value for the So-
cial Tags will give more importance to the tags used by the
community (namely, the whole folksonomy) on the target
resource. These parameters are biased by the user practice:
if tags often used by the user are very different from those
used from the community, the PTW should be higher than
STW. We performed an empirical study since it is difficult to
define the user behavior at run time. We tested the system
setting the parameters with several combinations of values:
i) PTW = 0.7 STW = 0.3;
ii) PTW = 0.5 STW = 0.5;
iii) PTW = 0.3 STW = 0.7.

Another parameter that can influence the system perfor-
mance is the set of fields to use to compose the query. For

each resource in the dataset there are many textual fields,
such as title, abstract, description, extended description, etc.
In this case we used as query the title of the webpage (for
bookmarks) and the title of the publication (for BibTeX en-
tries).

The last parameter we need to tune is the threshold to
deem a tag as relevant (γ).We performed some tests sug-
gesting both 4 and 5 tags and we decided to recommend
only 4 tags since the fifth was usually noisy. We also fixed
the threshold value between 0.20 and 0.25.

In order to carry out this experimental session we used the
aforementioned dataset both as training and test set. We ex-
ecuted the test over 50, 000 bookmarks and 50, 000 BibTeXs.
For each resource randomly chosen from the dataset and for
each combination of parameters, we executed the following
steps:

• query preparation;

• Lucene retrieval function invocation;

• building of the set of Candidate Tags;

• comparing the recommended tags with the real tags
associated by the user;

• computing of Precision, Recall, and F1-measure.

Results are presented in Table 2 and Table 3.

Analyzing the results (see Figure ??), it emerges that the
approach we called user-based outperformed the other ones.
In this configuration we set PTW to 1.0 and STW to 0, so
we suggest only the tags already used by the user in tagging
similar resources. No query was submitted against the So-
cialIndex. The first remark we can make is that each user
has her own mental model and her own vocabulary: she usu-
ally prefers to tag resources with labels she already used.
Instead, getting tags from the SocialIndex only (as proved
by the results of the community-based approach) often in-
troduces some noise in the recommendation process. The
hybrid approaches outperformed the community-based one,
but their predictive accuracy is still worse when compared
with the user-based approach. Finally, all the approaches

-30-

Table 2: Predictive accuracy of STaR over 50, 000
bookmarks

Approach STW PTW Pr Re F1

Comm.-based 1.0 0.0 23.96 24.60 24.28
User-based 0.0 1.0 32.12 28.72 30.33

Hybrid 0.7 0.3 24.96 26.30 25.61
Hybrid 0.5 0.5 24.10 25.16 24.62
Hybrid 0.3 0.7 23.85 25.12 25.08
Baseline - - 35.58 10.42 16.11

Table 3: Predictive accuracy of STaR over 50, 000
BibTeXs

Approach STW PTW Pr Re F1

Comm.-based 1.0 0.0 34.44 35.89 35.15
User-based 0.0 1.0 44.73 40.53 42.53

Hybrid 0.7 0.3 32.31 38.57 35.16
Hybrid 0.5 0.5 32.36 37.55 34.76
Hybrid 0.3 0.7 35.47 39.68 37.46
Baseline - - 42.03 13.23 20.13

outperformed the F1-measure of the baseline. We computed
the baseline recommending for each resource only its most
popular tags. Obviously, for resources never tagged we could
not suggest anything.

This analysis substantially confirms the results we ob-
tained from other studies performed in the area of the tag-
based recommendation [1].

5. CONCLUSIONS AND FUTURE WORK
Collaborative Tagging Systems are powerful tools, since

they let users to organize the information in a way that per-
fectly fits their mental model. However, typical drawbacks of
collaborative tagging systems represent an hindrance, since
the complete tag space is too noisy to be exploited for re-
trieval and filtering task. So, systems that assist users in the
task of tagging speeding up the tag convergence are more
and more required. In this paper we presented STaR, a so-
cial tag recommender system. The idea behind our work
was to discover similarity among resources in order to ex-
ploit communities and user tagging behavior. In this way
our recommender system was able to suggest tags for users
and items still not stored in the training set. The experi-
mental sessions showed that users tend to reuse their own
tags to annotate similar resources, so this kind of recommen-
dation model could benefit from the use of the user personal
tags before extracting the social tags of the community (we
called this approach user-based). Next, we showed that the
integration of a more effective scoring function (BM25) could
also improve the overall accuracy of the system.

This approach has a main drawback, since it cannot sug-
gest any tags when the set of similar items returned by
Lucene is empty. So, we plan to extend the system in or-
der to extract significant keywords from the textual content
associated to a resource (title, description, etc.) that has

not similar items, maybe exploiting structured data or do-
main ontologies. Furthermore, since tags usually suffer of
typical Information Retrieval problem (namely, polysemy,
synonymy, etc.) we will try to establish if the integration
of Word Sense Disambiguation tools or a semantic repre-
sentation of documents could improve the performance of
recommender. Another issue to analyze is the application
of our methodology in different domains such as multimedia
environment. In this field discovering similarity among items
just on the ground of textual content could be not sufficient.
Finally, we will perform also some studies in the area of
tag-based recommendation, investigating the integration of
tag recommenders for recommendations tasks, since reach-
ing more quickly the tag convergence could help to build
better folksonomies and to produce more accurate recom-
mendations.

6. REFERENCES
[1] P. Basile, M. de Gemmis, P. Lops, G. Semeraro,

M. Bux, C. Musto, and F. Narducci. FIRSt: a
Content-based Recommender System Integrating Tags
for Cultural Heritage Personalization. In P. Nesi,
K. Ng, and J. Delgado, editors, Proceedings of the 4th
International Conference on Automated Solutions for
Cross Media Content and Multi-channel Distribution
(AXMEDIS 2008) - Workshop Panels and Industrial
Applications, Florence, Italy, Firenze University Press,
pages 103–106, November 17-19, 2008.

[2] C. H. Brooks and N. Montanez. Improved annotation
of the blogosphere via autotagging and hierarchical
clustering. In WWW ’06: Proceedings of the 15th
international conference on World Wide Web, pages
625–632, New York, NY, USA, 2006. ACM Press.

[3] C. Cattuto, C. Schmitz, A. Baldassarri, V. D. P.
Servedio, V. Loreto, A. Hotho, M. Grahl, and
G. Stumme. Network properties of folksonomies. AI
Communications, 20(4):245–262, December 2007.

[4] S. Golder and B. A. Huberman. The Structure of
Collaborative Tagging Systems. Journal of
Information Science, 32(2):198–208, 2006.

[5] Maria Grineva, Maxim Grinev, and Dmitry Lizorkin.
Extracting key terms from noisy and multi-theme
documents. In 18th International World Wide Web
Conference, pages 651–661, April 2009.

[6] P. Heymann, D. Ramage, and H. Garcia-Molina.
Social tag prediction. In SIGIR ’08: Proceedings of the
31st annual international ACM SIGIR conference on
Research and development in information retrieval,
pages 531–538, New York, NY, USA, 2008. ACM.

[7] R. Jäschke, L. Marinho, A. Hotho,
L. Schmidt-Thieme, and G. Stumme. Tag
recommendations in folksonomies. In Alexander
Hinneburg, editor, Workshop Proceedings of Lernen -
Wissensentdeckung - Adaptivit?t (LWA 2007), pages
13–20, September 2007.

[8] M. Lipczak. Tag recommendation for folksonomies
oriented towards individual users. In Proceedings of
ECML PKDD Discovery Challenge (RSDC08), pages
84–95, 2008.

[9] L. B. Marinho and L. Schmidt-Thieme. Collaborative
tag recommendations. pages 533–540. 2008.

[10] A. Mathes. Folksonomies - cooperative classification

-31-

and communication through shared metadata.
Website, December 2004. http://www.adammathes.
com/academic/computer-mediated-communication/

folksonomies.html.

[11] G. Mishne. Autotag: a collaborative approach to
automated tag assignment for weblog posts. In WWW
’06: Proceedings of the 15th international conference
on World Wide Web, pages 953–954, New York, NY,
USA, 2006. ACM.

[12] S. E. Robertson, S. Walker, M. H. Beaulieu, A. Gull,
and M. Lau. Okapi at trec. In Text REtrieval
Conference, pages 21–30, 1992.

[13] G. Salton. Automatic Text Processing.
Addison-Wesley, 1989.

[14] C. Schmitz, A. Hotho, R. Jäschke, and G. Stumme.
Mining association rules in folksonomies. In
V. Batagelj, H.-H. Bock, A. Ferligoj, and A. Őiberna,
editors, Data Science and Classification (Proc. IFCS
2006 Conference), Studies in Classification, Data
Analysis, and Knowledge Organization, pages 261–270,
Berlin/Heidelberg, July 2006. Springer. Ljubljana.

[15] S. Sood, S. Owsley, K. Hammond, and L. Birnbaum.
TagAssist: Automatic Tag Suggestion for Blog Posts.
In Proceedings of the International Conference on
Weblogs and Social Media (ICWSM 2007), 2007.

[16] M. Tatu, M. Srikanth, and T. D’Silva. Rsdc’08: Tag
recommendations using bookmark content. In
Proceedings of ECML PKDD Discovery Challenge
(RSDC08), pages 96–107, 2008.

[17] T. Vander Wal. Folksonomy coinage and definition.
Website, Februar 2007.
http://vanderwal.net/folksonomy.html.

[18] H. Wu, M. Zubair, and K. Maly. Harvesting social
knowledge from folksonomies. In HYPERTEXT ’06:
Proceedings of the seventeenth conference on Hypertext
and hypermedia, pages 111–114, New York, NY, USA,
2006. ACM Press.

-32-

Social Trust as a solution to address sparsity-inherent
problems of Recommender systems

Georgios Pitsilis

Q2S, NTNU
O.S. Bragstads plass 2E

NO-7491, Trondheim, Norway
+47 735 92743

pitsilis@q2s.ntnu.no

Svein J. Knapskog

Q2S, NTNU
O.S. Bragstads plass 2E

NO-7491, Trondheim, Norway
+47 735 94328

knapskog@q2s.ntnu.no

ABSTRACT
Trust has been explored by many researchers in the past as a
successful solution for assisting recommender systems. Even
though the approach of using a web-of-trust scheme for assisting
the recommendation production is well adopted, issues like the
sparsity problem have not been explored adequately so far with
regard to this. In this work we are proposing and testing a scheme
that uses the existing ratings of users to calculate the hypothetical
trust that might exist between them. The purpose is to
demonstrate how some basic social networking when applied to
an existing system can help in alleviating problems of traditional
recommender system schemes. Interestingly, such schemes are
also alleviating the cold start problem from which mainly new
users are suffering. In order to show how good the system is in
that respect, we measure the performance at various times as the
system evolves and we also contrast the solution with existing
approaches. Finally, we present the results which justify that such
schemes undoubtedly work better than a system that makes no use
of trust at all.

Keywords
Recommender Systems, Trust Modeling, data sparsity problem
Cold-Start problem, Social network.

1. INTRODUCTION
Services offered by recommender systems tend to be hosted in
centralized systems. Beside the benefit that is offered in terms of
easiness in managing the resources and the availability of the
services, there are issues with regard to how much the new users
can receive the benefits of their participation in the system. As
new users we consider those who have not contributed enough
data to the system and hence makes it difficult for predictions for
them to be made. Similarly, the same problem seems to exist with
items which the users have not have much experience yet.
Recommender system services may be offered by social
networking platforms like FaceBook [1] and web-pages like
dealtime.com [2] or Amazon [3] and may be using mechanisms of
User-Based recommender systems for working out predictions for
items that users potentially like.

Any potential solution for alleviating the data sparsity issue
should not work at the expense of performance of such system but
instead it should provide some substantial benefits to users during
their bootstrapping. The inability of new users in supplying

sufficient quantities of data to the system for predictions to be
computed accurately is described in the literature as “cold-start
problem”[4].

Our approach for overcoming the above problem is based on the
idea of extending the neighboring base of new users so that they
can be correlated with more participants, not necessarily linked
directly with each other via similarity relationships, but been
discovered via “friends” as trustworthy for contributing useful
data. The trust for them can be inferred via their similar, and
hence common, neighbors in a scheme that is known as ‘web-of-
trust’. In this way, due to the propagation characteristics of trust,
it is plausible that similarity between entities that could not be
linked previously is becoming exploitable. Users who can be
discovered via friends-of-friends might be useful as they may
carry valuable experience about some product that is of interest to
somebody else. As trust is mainly used for extending the number
of relationships between people, users can now cooperate with
more participants than before and thus get access to more
recommendations. For short we call our system ‘hybrid’ as it
combines both trust networks and traditional recommender
systems approaches. We used a framework called “Subjective
Logic” for the reasoning of the virtual trust relationships, and
since the adaptation to existing recommender system models is a
key issue, we used a model that we built our own for inferring
trust from the existing users’ experiences.

The evaluation we present shows the twofold benefit of this
approach as the accomplished reduction of sparsity is
accompanied by improved performance. To show the
improvement with regard to the cold-start problem we
demonstrate how some performance metrics evolve as the user
community is growing. The rest of the paper is organized as
follows: Section 2 is referred to the description of the problem. In
section 3 we present the idea and the logical reasoning behind it.
An evaluation of the idea follows in section 4, analysis of work
that has been done in the area there is in section 5 and finally we
conclude with a discussion of the results.

2. PROBLEM STATEMENT
The sparsity-inherent problems of recommender systems are
related to the fact that a satisfactory number of inferences for
either users or items can not be extracted, due to lack of gathered
information.

User-Based recommender systems that employ a technique called
Collaborative filtering (CF) (in which the user preference for

-33-

some item is computed upon the similarities between the users),
mainly use Resnicks’s [10] formula (Equation. 1) for working out
predictions ra,(i) for user a and items i. With wa,u is denoted the
Pearson’s similarity of user a with user u, and ru the rating of user
u for the item that is of interest to a. The formula does not give
satisfactory accuracy when sparse datasets are used, as the
predictions are highly sensitive to the number of similar
participants, n.

 uu

n

u
uaaa rirwrir  



)()(
1

,
 (1)

Even though the exploitation of social networks has been
recognized as a potential solution for addressing such problems
[18], the applied solutions, at least as it seems, do not fulfill this
requirement completely. For example, in Epinions.com [17], a
well known commercial recommender system, the formation of
the trust network is done explicitly by asking users themselves to
express whom they trust. In our opinion that is very unproductive
for two reasons: first, because not all users are familiar with the
notion of trust and hence they are unable to explicitly express
whom they trust, and second because people, as it happens for
item ratings, are unwilling to invest much time and effort in
contributing with their opinions. The latter is considered as the
main reason for having sparse datasets.

The cold-start problem has been approached in the past from the
aspect of being a problem in social networking and recommender
systems. In [20] it is suggested that special criteria should be used
for deciding to whom it is best for the new users to connect. The
decision in this case is based upon users’ so far objective
assessment of candidates for their suitability and it is decided on
how active they have been in contributing data to the system.
Nevertheless, such a decision is based solely on quantitative
criteria and in our opinion it would be best if qualitative criteria
(such as how useful such recommendations have been found to be
by the cold start users) were also used. In addition, in the above
mentioned solutions the social trust is not adequately exploited, as
the discovery for trustworthy participants is usually done by
applying local criteria.

It is crucial that when a new idea is applied to an existing system
for enhancing its performance it is done in such a way that adapts
best to it. Therefore in our model, no additional data should be
required to be supplied by users, but the inferred trust should be
implicitly derived from the existing evidence instead. This
procedure is also useful from the practical aspect, since by doing
so the existing recommendation production cycle would not need
to change significantly to include the benefits that social
networking provides. Similar ways of implicit derivation of user’s
trust from evidence has been proposed for other purposes before,
like the EigenTrust algorithm [21] that was mainly build for peer-
to-peer systems. However, the trust in that case was essentially
perceived as a global reputation value due to being independent
on the point of view.

To our knowledge, the use of trust networks for alleviating
sparsity-inherent problems, such as the cold-start problem in
recommender systems have not been adequately studied so far.

With regard to trust models and frameworks, there are many
developed so far, most of them mainly to meet special
requirements of particular problems, and other more generic ones
such as Subjective Logic [11]. We mention this framework

explicitly because of the substantial adoption it has received for
studying the effects of trust propagation in user communities.

3. DESCRIPTION OF THE APPROACH
User-based recommender systems that use Resnick’s formula are
limited to computing predictions of ratings for users whose
similarity wa,u with the all contributing participants is known. The
limited number of neighbors that can contribute during the system
bootstrapping is a significant constraint for achieving good
performance during the early stages of the recommender system’s
life.

Since the accuracy of predictions that the querying user receives
is dependent on the number of neighbors/predictors that appear to
be similar to him/her, it means that a substantial improvement can
be achieved if multiple predictors could be involved in the
computation of ra,(i). As new users do not have enough
experiences to contribute during the bootstrapping it means the
performance would be sub-optimal as there would not be enough
links between them.

One characteristic pitfall of a conventional recommendation
system mechanism is the inability to incorporate prediction
ratings of other participants who have experienced some item that
is of interest to the querying agent, but their similarity with the
querying agent cannot be inferred.

If a recommender system were to be represented graphically, the
similar users would appear to be within a distance of one hop
away from the querying user. Exploitation of information that
resides at longer distances would be plausible if similarity could
have propagative characteristics. Since trust is known for
providing such property, which is the key idea of social networks,
it means inferring trust from similarity could make it possible to
overcome the above limitation. Pursuing this idea further, the
neighboring base of users could be extended beyond the one hop
range by introducing a hybrid system in which the similarity
could be inferred from trust.

The above requirement for predicting the rating that some user i
would give to item b can be expressed as follows:

 )()(:)(| brbranaBb jiij

 )(:)(brana kjk

(2)

where B is the set of all items in the system, i,j,k are 3 users, a is
the set of users and n() is a function that denotes a similar
neighbor to i.

In a typical scenario of operation of a User-Based recommender
system (see figure 11) we assume that Alice and Bob have both
experienced a number of items Ba and Bb respectively and hence it
can be known how similar they are. On the other hand Clark has
another set of common experiences with Bob, and hence it can
also be known how similar Bob is with him. However, Clark’s
experience about some new item that might be of interest to
Alice, is not exploitable in the conventional system (Alice’s
similarity to Clark’s is not computable).

Extending this consideration and inferring trust implicitly from
the calculated similarity for every pair of similar users, then

1 The letters A…L represent the items rated by users and the

numbers 1…5 the rates given.

-34-

finally a web-of-trust for social partners linked together can be
developed.

One important issue that comes from the implicit derivation of
trust is concerned with the representation of the existing evidence
into trust metrics. For that reason some appropriate mapping is
necessary.

3.1 Trust Modeling
In socially aware systems, users benefit from their trust and
connections with others as they can find people they need through
the people they trust. Links to a person imply some amount of
trust for this person. The importance of social networks is found
in the exploitation of such network data to produce information
about trust between individuals which have no direct network
connection. In theory about trust, this requirement is described
with a property called transitivity which we are attempting to
exploit in this work. As trust is not perfectly transitive in the
mathematical sense, however it can be useful in the way like in
the real world people consider recommendations from others they
trust for their choices. Since trust that derives though
recommendations is dependent on the point of view it means it is
merely subjective.

In contrast to similarity, trust relationships can be propagated
transitively throughout the network of users. In this way the
common neighbors can act as trustworthy participants for users of
whom similarity is not known, but can be approximated via their
derived trust. The concept of computing the indirect trust for
distant entities requires the employment of some suitable algebra
such as Subjective Logic. However, it is required that evidence
has first been transformed into some form that the trust algebra
can use.

Trust in subjective logic is expressed in a form that is called
opinion and is referred to a metric that originally was introduced
in Uncertain Probabilities theory [22], an extension to
probabilistic logic. An opinion expresses the belief about the truth
of some proposition which may represent the behavior of some
agent. The ownership of the opinion is also taken into account and
this is what makes the assessment of trustworthiness subjective.
Furthermore, this theory is suitable for modeling cases where
there is incomplete knowledge. In the case of recommender
systems the lack of knowledge about some agent’s rating behavior
comes from the fact that there are usually limited observations of
the rating behavior of some person. The lack of knowledge is
actually what shapes the subjective trust or distrust towards that
entity. The absence of both trust and distrust in opinions is
expressed by the uncertainty property. The subjective logic

framework uses a simple intuitive representation of uncertain
probabilities by using a three dimensional metric that comprises
belief (b), disbelief (d) and uncertainty (u) into opinions. It is
required that evidence comes in such a form that opinions

},,{ A
p

A
p

A
pp udb about some agent A with regard to the

proposition p can be derived from it, and thus be better
manageable due to the quite flexible calculus that the opinion
space provides. By convention the following rule holds for b,d,u:
b+d+u=1.

Subjective Logic provides the following two operators:
recommendation (3) and consensus (4). Both can be used for
combining opinions and deriving recommendations regarding
other agents in the social network.

},,{ ,,,, BA
p

BA
p

BA
p

B
p

A
p

BA
p udb  (3)

A, B are agents and },,{ B
p

B
p

B
p

B
p udb is the opinion of B

about p expressed as a recommendation to A.

},,{ A
B

A
B

A
BB udb is the opinion of A about the

recommendations of B. The consensus opinion AB
p is held by an

imaginary agent AB representing both A and B.

},,{ AB
p

AB
p

AB
ppp udb 


  (4)

The output values b,d,u of the combined opinions are derived
from simple algebraic operations. More about this can be found in
[11]. In our opinion the above considerations of Subjective Logic
are quite sufficient for deriving recommendations with regard to
the rating behavior of users whose subjective trustworthiness can
be computed transitively within the social network of trusted
participants.

In the literature trust is also distinguished into direct and indirect
trust, the former when it is derived from personal experience of a
trustor, and the latter when it is derived from recommendations of
others. Also, another distinction of it is functional trust, which
expresses the trustworthiness for some agent with regard to some
proposition p, and recommendation trust which expresses the
trustworthiness of some agent as a recommender.

In our example depicted in figure 1, Bob has functional trust in
Clarke’s rating behavior, but the trust that can be derived by Alice
for Clark via Bob’s recommendation trust is indirect trust since
Alice does not have her own evidence to support it, but merely
trusts Bob’s taste. Finally, the trust that Alice is interested in
knowing for Clark, is actually an indirect functional trust, which
indicates how much she would trust him for his taste.

As far as the evidence transformation is concerned, various
models for converting ordinary observations into evidence have
been proposed [11][19]. For our approach, we have used a simple
model which is best suited to recommender system data [12]. In
our work we have come up with a solution of deriving the
trustworthiness that a pair of agents would place in each other by
using existing data such as ratings for items they have gathered
experience with. In the same work an approach for mapping trust
into similarity is also introduced. This is explained below.

For calculating the uncertainty we used the simplified formula:
1)1( nu , in which n denotes the number of common

experiences in a trust relationship between two agents A and B.

Figure 1. A typical recommendation production.

Clark

Alice

Indirect functional trust for Clark

Recommender
trust for Bob

Functional
trust for
Clark

 A
 B
 C
 D
 E
 F
 G

 4

 3

 5

 5
 2 3

 4
 4
 4
 3

 4

 1
 M
 B
 H
 I
 J
 K
 L

 1

 4

 2

 4
 5 4

 4
 3
 4
 1

 3

 1
Bob

-35-

The derivation of opinions from existing user experiences with
items can be done by using an appropriate formula such as the
one given below which we used for our experiment. This formula
was used for shaping the belief property (b) of Subjective Logic
from User Similarity (Wa,u) also known as Correlation
Coefficient.

 K
uaWub ,1)1(

2

1
 (5)

The disbelief property d of the opinions can easily be derived
from the remainder of b and u as: d =1-b-u.

In our case scenario of recommender system the calculated belief
(b) is referred to either recommender or functional trust. In
equation 5 the k value denotes the exponent in the equation used
for transforming the similarity metric into derived belief (k=1 for
linear transformation).

In the figure below we present pictorially a high level view of our
hybrid system that could take advantage of this idea. The trust
derivation mechanism for predicting the ratings that users would
give to products can be easily embedded into the existing ordinary
system.

The part of the diagram shown in dotted line represents the
existing recommendation production mechanism and it applies
only if evidence suffices for computing the similarity of Alice to
Clark.

4. EVALUATION
We evaluated the performance of our hybrid approach against
various alternatives such as the standard CF technique which
employs the Pearson similarity and uses Resnick’s prediction
formula [10].

The results which demonstrate the effectivenes of predicting user
likeness express the ability of the system to identify potentially
unsatisfactory options. Moreover, we introduce a set of metrics to
demonstrate efficiency in terms of sparsity reduction as well as
effectiveness against the cold-start problem.

For the evaluation we used a subset of a movie recommendation
system called Movielens. This original dataset contains more than
1 million movie recommendations submitted during a period of
812 days by around 6000 users for 3100 movies. To capture the
dynamic characteristics of performance that evolve over time, we
made use of the timestamp (TS) information that is attached on
every submitted rating. We divided the rating experiences into 5
sets, each containing ratings submitted within the same period of
time. Finally, we performed the experiment for each of those sets
separately. As the number of recommendations performed at each
stage is more important to be shown than the timestamp
information we considered as the best solution to present the

adjacent sparsity value. That is the percentage of ratings in the
users by items matrix for which originally no values had been
provided.

To fulfill the requirement for calculations of similarity to be
stable we assumed that similarity between two users is calculable
only if there are at least 10 items that have been rated by both of
them.

It is worth mentioning that in the current experiment, no control
has been applied on filtering the number of neighbors that a user
can have, and the only limiting factor for forming a trust
relationship is the number of common experiences that exist.

4.1 Metrics Used
Predictive Accuracy metrics such as MAE are quite popular for
measuring how close the recommender system’s predicted ratings
are to the true user ratings [13]. However, it is also interesting to
know how good the system would be in successfully identifying
the items that users would be unhappy with, and therefore we also
used Classification Accuracy metrics. To justify this decision we
claim that in the way the experiment was done, there were no
rating predictions attempted for items that had no recorded rating
experiences and hence the danger that one might be lead into
classification errors is significantly reduced.

4.1.1 Measuring Coverage
With Coverage we refer to the percentage of items for which
predictions can be made and in [14] it is defined as:

   
AB

branaBb
C Aa jij

i





 

}:{
 (6)

where A and B are the set of users and products respectively, rj is
a rating function and n(a) denotes the set of similar neighbors of
some user a.

We introduce one new metric, User Coverage Gain (UCG), to
demonstrate the actual benefit that users receive when they make

use of the trust graph. This metric relates the cost A with the

benefit R, expressed as a ratio of the hybrid system by the
standard CF. It can be computed using the following formula:

TS
s

s

h

h

A

R

A

R
UCG





























1

1

(7)

 Rh and Rs refer to the number of predictions that the system was
capable of performing for the new users in timestamp TS for the

hybrid and the standard recommender system respectively. hA

and
sA refer to the sizes of populations of users which have

made use of the trust network for discovering other participants at
time TS, and correspondingly the adjacent number of users who
would use the standard CF for performing those predictions. The
populations of users are expressed as in formulas (8) and (9). The
formula for Ah is corresponding to the scenario that trust
propagation has been restricted to max distance of 2 hops only,
which is the case for our experiment. The items recommended in
every timestamp can be expressed as in formula (10)

 


Bbs ancAaA :)({ })()( brbr ca
 (8)

Figure 2. The conceptual view of our hybrid system

Direct Trust of
Alice for Bob

Existing Ratings of
Alice, Bob and
Clark

Indirect Trust of
Alice for Clark

Similarity of Alice
and Clark

Similarity of Bob
for Clark

Similarity of Alice
for Clark

Predicted
rating of
item L for
Alice

Direct Trust of
Bob for Clark

Similarity of
Alice for Bob

-36-




Bb kh andancAaA)(),({

})()(:)( brbrcnd dak

(9)

 


Aa i
i

brBb })(:{ (10)

For showing the level of contribution of the trusted participants to
a prediction to be made, we came up with a metric called Trust
Graph Contribution. This metric is presented in formula (11) and
as can be seen it relates the relative increase in the number of
users (due to the use of trust network) used for the produced
recommendations, with the actual number of recommendations
produced. This relative increase is expressed as the ratio of
trusted neighbors by all neighbors (trusted and similar). With
“trusted neighbors” we refer to those users in the social graph for
which their similarity with the querying user was derived by
propagated trust recommendations and was not calculated directly
by correlating the common experiences (ratings) with some
neighbor as it is done for the case of “similar” ones.

TS
Ri sh

h

AA

A
RCtrb 
























 


1
(11)

In formula (11), As and Ah are the same as explained before, R is
the set of recommendations produced in some timestamp and is
the sum of Rh and Rs. This metric demonstrates how effective the
discovery of neighbors of interest can be via the social network
and it is interesting to know how it contributes in the performance
improvement.

Beside new users, items for which there extensive experience is
not available are also affected by the cold-start problem.
Therefore, we found it necessary to measure the improvements
that the hybrid solution would offer to them as well.

4.1.2 Measuring Accuracy
Predictive Accuracy is a standard metric for measuring how close
the predicted ratings are to the true user ratings. In our experiment
we measure the MAE (Mean Average Error) which shows the
absolute deviation between the two. However, as MAE can be
unimportant for showing the performance for items of interest to
users, we considered also using other accuracy metrics in addition
to this.

Classification Accuracy metrics are used to measure the
frequency with which the system makes incorrect or correct
decisions about whether an item is bad or good and it is usually
applied in connection with the task of finding lists of top items.

As we mentioned previously we consider it more appropriate to
demonstrate how useful the system is in helping users to avoid
making choices of products that they might be unhappy with.
Therefore we used the metric F-score, also called Harmonic
Mean, and it is used in information retrieval. F-score measures
the effectiveness of retrieval with respect to the cost of retrieving
the information [13].

It is necessary that the negative (N) and positive (P) instances are
clearly distinguished, and for our particular case we characterize
as N the case of experiences with products that the user would be
unsatisfied with and would give low rating. The opposite case
corresponds to P. Precision is defined as:

FPTP

TP
P


 and

represents the ratio of instances that were correctly predicted as
non-satisfactory by the user against all instances that were
predicted as non-satisfactory. Recall is:

FNTP

TP
R


 and

represents the number of instances that were correctly predicted
as non-satisfactory ones normalized by the total number of
instances that actually received unsatisfactory rating. The F-score
that shows the relative tradeoff between the benefits (TP) and the
costs (FP) is calculated using the formula:

RP

PR
F




2 .

As rating values of 1 and 2 represent an unfortunate choice and 4
and 5 a successful choice, we used the value 3 as threshold for
considering an experience as unsatisfactory. In table 1 we present
the confusion matrix. We considered as true positives (TP) the
instances that where correctly classified as receiving low rating
and false negatives (FN) those instances that were classified as
having high rating, but still predicted as been non-satisfactory to
the users. True negatives (TN) denote those which were correctly
classified as giving a high rating. Finally, false positives (FP) are
referred to the number of bad items which were mistakenly
classified by the system as satisfactory ones for the new users.

Table 1. Confusion Matrix

Actual \
Predicted Predicted

Value ≤ 2
Predicted
Value > 2

Rating ≤ 2 TP FP
Rating > 2 FN TN

The evaluation was done using the cross validation technique
leave-one-out applied on every user rating. The process was the
following: every rating provided by each user was removed from
the dataset and then its value was tentatively computed using the
trust network. The computed and the removed value are then
compared and the error was calculated. The evaluation algorithm
is presented in the figure below.

Algorithm: Evaluation plan

1. for all users i who have provided at least 10 ratings
2. for all items k of user i
3. Pset ← ø
4. for all users j whose common rated items with i > 10
5. if (j similar to i)
6. Pset ← Pset U { j }
7. Similar ← Similar +1
8. else if (trust of i for j is computable)
9. derive similarity of i for j from trust of i for j
10. Pset ← Pset U{ j }
11. Trusted ← Trusted +1
12. end for
13. predict k for over Pset
14. calculate MAE for k
15. calculate TP,FP,NF,F-score for i
16. end for
17. end for
18. Trust Graph Contribution ← Trusted / (Trusted + Similar)
19. average MAE for all i

Figure 3. The evaluation plan in pseudo-code

-37-

With regard to coverage, only those values which were possible to
compute were considered for contributing to it.
To study more closely the benefits that our system can offer to the
entities that are mostly affected by the cold-start problem, we
repeated the experiments considering the new items and the new
users alone. To achieve that for every timestamp we filtered and
counted those entities which committed their first experience at
that particular timestamp.

4.2 Results – Discussion

4.2.1 Overall Performance
With regard to the overall performance of the system, we first
demonstrate the results we obtained for the Coverage Gain and
the Contribution of Trust Graph. In these diagrams, time is
represented by its adjacent sparsity value and is shown across the
horizontal axis.

In figure 4 is shown how the Contribution of the Trust Graph
develops over the experiment. For every recommendation
produced, the ratio of trusted participants considered for this
recommendation divided by all participants (trusted and similar)
used for the same recommendation is counted and the results are
averaged. As can be seen from the diagram this metric follows in
general a decreasing trend throughout the simulation, but more
importantly, it gets its maximum value towards the beginning
when the trust network is still building up. We interpret this as a
good indication that our system can cope well with the cold start
problem as the resources of the hybrid system are shown to be
exploited better at that timestamp. The decreasing trend followed
afterwards is explained as the effect of gradual replacement of
trust relationships by computed similarity as more and more
recommendations are submitted over time. In the same figure is
shown the benefit of using the hybrid system in terms of User
Coverage Gain in comparison to using the standard Collaborative
Filtering. Interestingly enough, this metric follows an increasing
trend and more importantly it remains unaffected by the
decreasing rate of new users.

0

5

10

15

20

25

30

35

40

45

-20

-10

0

10

20

30

40

50

60

99
,7

7

98
,5

7

97
,5

0

96
,7

8

95
,7

1

C
tr

b
 (

%
)

Timestamp - Sparsity (%)

Average Relative Benefit in performing recommendations when
using the Trust Graph

User Coverage Gain

Contribution of Trust Graph

U
C
G

That is because the new users who join late get higher support as
the friends-of-friends network is then denser than before.

As far as the rating accuracy is concerned the results for both the
classification accuracy (F-score) and predictive accuracy (MAE)
are shown in table 2 and are also graphically presented in figure
5.

For the classification accuracy, the results show that there is quite
a notable advantage of our method over the standard CF in
discovering those items that a user would be unhappy to choose.

Table 2. Accuracy expressed in F-score and MAE

F-score MAE % Timestamp
(sparsity) \
Method Standard Hybrid Standard Hybrid

1- (99,77 %) 0,0836 0,0952 15.944 15.686
2- (98,57 %) 0,1546 0,1832 14.562 15.126
3- (97,50 %) 0,2443 0,2720 14.652 15.350

4- (97,78 %) 0,3030 0,3350 15.228 15.676

5- (95,71 %) 0,3347 0,3598 15.210 16.100

As can be seen this advantage appears from early on (first
timestamp), it maximizes at the second timestamp (highest
difference between the F-score values of the standard and hybrid
models) when the data is still quite sparse, and continues so at all
consecutive timestamps. It is interesting to note that this behavior
is very unlikely to be coincidental as it appeared at all five
different datasets we tested.

One can also see that the predictive accuracy appears to be higher
in the proposed system than in the standard one, but here there is
temporary decrease during the early timestamps.

0

0,1

0,2

0,3

0,4

0,5

0,6

12

12,5

13

13,5

14

14,5

15

15,5

16

16,5

99
,7

7

98
,9

3

97
,5

97
,7

8

95
,7

1

M
A

E
 (

%
)

Timestamp - Sparsity (%)

Predictive and Classification accuracy for all users

CF (MAE)

Hybrid (MAE)

CF (F-Score)

Hybrid (F-Score)

F‐
Sc
o
re

4.2.2 Selective Performance
Next we present our results which demonstrate the behavior of the
examined systems when considering only the new users and
items. First we demonstrate the sizes of populations of cold-start
users and items that appeared for the first time on each timestamp.

From the diagrams in figure 6 it can be seen that in the case of the
hybrid system, the cold-start users are shown to be committing
their first experience with the hybrid system earlier than in the
standard CF. In the first two timestamps, the number of new users
in the former is higher than in the latter. As expected though, that
trend is declining as the system develops over time. This looks
quite reasonable from the way our experiment was done, as in
contrast to a real world running system, we used restricted size
sets of 100 users.

The early emergence of new users that appears in the hybrid
system is indicative of its success in exploiting the social network
and performing predictions that wouldn’t be possible in the

Fig. 4. The Coverage Gain & Trust graph Contribution

Figure 5. The accuracy for the compared schemes

-38-

conventional one, and hence attract more users. Consequently the
same happens for cold-start items which are now discovered and
rated by users earlier in the hybrid system than in the standard
recommnder system.

0

10

20

30

40

50

60

70

80

90

100

0

100

200

300

400

500

600

700

800

99
,7

7

98
,5

7

97
,5

96
,7

8

95
,7

1

Ite
m

s
#

Timestamp - Sparsity (%)

New Items and Users

CF (Items)

Hybrid (Items)

CF Users

Hybrid (Users)

U
se
rs
 #

In table 3 we present the prediction and classification accuracy for
cold-start users and items and the results are pictorially presented
in figures 7 and 8. As far as prediction accuracy is concerned,
from the results it can be seen that the deployment of the trust
system into the existing one has no impact on the accuracy of
ratings prediction, as the error is kept low (below 15%) during the
early stages of the system. For the new items the situation looks
quite a lot better as there is no noticeable penalty in the prediction
error against using the standard recommender system. In
comparison to the overall performance results of figure 5, the new
users receive higher benefit (MAE 14.87%) than the average user
(MAE 15.13%) during the early timestamps (at TS:2). However,
this benefit is diluted as the time progresses. Instead, new users
loose this advantage if using the standard system. (MAE:14.56%
opposed to 14.58%).

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

13

14

15

16

17

18

19

20

99
,7

7

98
,5

7

97
,5

96
,7

8

95
,7

1

M
A

E
 (

%
)

Timestamp - Sparsity (%)

Predictive and Classification Accuracy for new Users

CF (MAE)

Hybrid (MAE)

CF (F-score)

Hybrid (F-score)

F‐
sc
o
re

Finally, it is also important to note the increasing trend in the
average error as seen in fig. 7 which means that new users who
join the system late are less likely to receive good service than
those who join early.

Regarding classification accuracy for new users and new items,
our measurements show that the proposed hybrid system
outperforms the traditional one at all time instances.

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0

2

4

6

8

10

12

14

16

18

99
,7

7

98
,5

7

97
,5

96
,7

8

95
,7

1

M
A

E
 (

%
)

Timestamp - Sparsity (%)

Accuracy of predictions of new Items

CF (MAE)

Hybrid (MAE)

CF (F-score)

Hybrid (F-score)

F‐
sc
o
re

The growing trend for F-score as it appears in fig. 7 is indicative
of the increasing benefit that new users receive as the system
develops. In comparison to the classification performance for all
users presented in fig. 5, the new users receive higher benefit than
anyone else as they are potentially guided better to avoid products
they will be unhappy with.

We consider the above two observations as a positive
consequence for the proposed system for compensating the users
early on. It is important that new users receive the highest benefit
as they are assumed to be less tolerant in receiving poor
recommendations. Experiencing poor recommendations
consistently over time may reduce their trust towards the system
and make them reluctant to rely on it for delivering good service.
If the original trust disappears, the users interest in using the
system may vanish altogether.

Table 3. Accuracy for new Users and new Items.

Predictive accuracy in MAE

New Users New Items Method
Timestamp
(sparsity) Standard Hybrid Standard Hybrid

1 - (99,77 %) 15.62 15.8 13.00 13.52
2 - (98,57 %) 14.58 14.87 15.06 15.27
3 - (97,50 %) 14.75 15.04 15.32 15.71

4 - (97,78 %) 14.86 15.42 15.37 15.72

5 - (95,71 %) 16.19 17.18 15.52 15.51

Classification accuracy in F-score

1 - (99,77 %) 0.088 0.090 0.071 0.095
2 - (98,57 %) 0.162 0.190 0.149 0.167
3 - (97,50 %) 0.235 0.277 0.230 0.250

4 - (97,78 %) 0.286 0.337 0.262 0.274

5 - (95,71 %) 0.275 0.326 0.265 0.291

5. BACKGROUND RESEARCH
Trust has been the subject of investigation by many researchers in
the past for alleviating issues connected with the use of sparse
datasets in recommender systems. Singular Value Decomposition

Figure. 7. The benefit of hybrid on new users

Figure. 8. The benefit of hybrid system on new items

Figure. 6. The new users and items

-39-

has been proposed by other researchers and found to be better
than the standard collaborating filtering [5] for alleviating sparsity
problems. Other approaches are based on the idea of removing
global effects and estimating the interpolation weights for each
weighting factor for improving the accuracy of recommender
systems [6]. Hybrid systems which combine content and
collaboration have also been proposed in which various weights
are set on the contribution of similarity [7]. In such an approach,
the weight is dependent on the number of common items. In [15],
O’Donovan and Smyth study the effects of using trust models in
the recommendation process and they demonstrate how it behaves
against various attack scenarios. In [8], a solution for computing
trust in CF systems has been investigated, but in the proposed
model the trustworthiness of the recommender is not taken into
account. In [9], in the work done by Lathia et.al., it is suggested
that collaboration groups could better be formed by k-trusted
neighbors rather than k-similar ones. In [16], the cold-start
problem is approached using some idea based on machine
learning. Massa et al. in [23] has published a similar idea with
ours, but based on different working hypothesis which requires
that users would provide the trust statements themselves. To our
knowledge trust has not been studied adequately so far as a
solution to the cold-start problem. In addition, even though all the
studies performed can demonstrate the advantages of using trust,
they are merely static and do not capture the characteristics of the
community as it evolves. Since the cold-start problem is a time
related issue we chose to demonstrate our proposed solution in a
way that it can be shown if the advantage actually becomes
available when the system needs it the most.

6. CONCLUSION
We have proposed a hypothetical hybrid recommender system
which uses trust to exploit the latent relationships between users
and we have measured its performance. In this way, also
knowledge that exists at distant participants can be discovered and
used by users who do not need to be known to each other. We
used our modeling technique to build trust from existing evidence.
The evaluation results show a significant benefit against the
standard technique both in terms of coverage and in accuracy of
predictions. It is interesting to note that the benefit is more
distinguishable for new users and items which traditionally are
mostly affected by the sparsity problem. Furthermore, the higher
values achieved for F-score are indicative of improved ability in
protecting users from choosing products that they may not like.
With regard to the challenge of alleviating the cold-start problem,
it can be seen that the benefits of using the trust enabled system
are particularly visible early on when they are actually needed. A
future challenge is to extend even further the period of time that
the benefit is received.

REFERENCES
[1] Facebook Social Network service, http://www.facebook.com

[2] General Consumer Review Site, http://www.dealtime.com

[3] Electronic Commerce Company, http://www.amazon.com

[4] Maltz D., Ehrlish K., Pointing the Way: Active Collaborative
filtering, In proc. of CHI-95,pp.202-209,New York, ACM Press
(1995)

[5] Sun X., Kong F., Ye S., A Comparison of Several Algorithms
for Collaborative Filtering in Startup Stage, In proc Networking
Sensing and Control, IEEE, pp.25-28 (2005)

[6] Bell R., Koren Y., Improved Neighborhood-based Collaborative
Filtering, In proc IEEE International Conference on Data
Mining, pp.7–14 (2007)

[7] Melville P., Mooney R.L. , Nagarajan R., Content-Boosted
Collaborative Filtering for Improved Recommendations, In proc
of Eighteenth national conf. of Artificial Intelligence, pp.187-
192, ISBN:0-262-51129-0 (2002)

[8] Quercia D., Heiles S., Carpa L., B-trust: Bayesian Trust
Framework for Pervasive Computing. In proc 4th International
Conf. iTrust 2006. Lecture Notes in Computer Science
(Vol.3986/2006). Springer, pp. 298-312 (2006)

[9] Lathia N., Hailes S., Carpa L., Trust-Based Collaborative
Filtering, in proc IFIPTM, Springer, Vol. 263, pp.119-134,
Trondheim, Norway (2008)

[10] Resnick P., Varian H.R., Recommender Systems,
Communications of the ACM. 40(3), pp. 56-58 (1997)

[11] Jøsang A., A Logic for Uncertain probabilities, International
Journal of Uncertainty, fuzzi-ness & Knowledge based
systems,Vol.9, No.3 (2001)

[12] Pitsilis G., Marshall L.F., Modeling Trust for Recommender
Systems Using Similarity Metrics, in proc. IFIPTM, Springer,
Vol. 263, pp.103-118, Trondheim, Norway (2008)

[13] Herlocker, J. L., Konstan, J. A., Terveen, L. G., and Riedl, J. T.
2004. Evaluating collaborative filtering recommender systems.
ACM Trans. Inf. Syst. 22, 1 (Jan. 2004)

[14] Ziegler C-N., Towards Decentralized Recommender Systems,
ISBN 363901149X, Vdm-Verlag, (2008)

[15] O’Donovan J., Smyth B. ,Is trust Robust?: An Analysis of Trust-
Based Recommendation, in Proc. of 11th International Conf. on
Intelligent User Interfaces IUI '06, pp.101-108, (2006).

[16] Xuan N. L., Thuc V., Trong D. L., Anh D. D., Addressing cold-
start problem in recommendation systems, in Proc. of the 2nd
international conf. on Ubiquitous information management and
communication, Jan.31-Feb.01, Suwon, Korea, (2008).

[17] General consumer review site. http://www.epinions.com,

[18] Golbeck J., Hendler J.. Inferring Trust Relationships in Web-
Based Social Networks, ACM Transactions on Internet
Technology, 6(4). (2006)

[19] Josang A.,Bhuiyan T.,Xu Y.,Cox C., Combining Trust and
Reputation Management for Web-Based Services, in Proc. of the
5th international conf. on Trust, Privacy and Security in Digital
Business,Turin, Italy, pp.90-99 (2008)

[20] Victor P., Cornelis C., Teredesai A. M., De Cock M., Whom
should I trust?: the impact of key figures on cold start
recommendations , In proc. SAC '08: ACM symposium on
Applied computing, pp. 2014-2018. (2008),

[21] Kamwar S. D, Schlosser M. T, Hector Garcia-Molina. “The
EigenTrust algorithm for reputation management in P2P
networks”. In: Proceedings of the 12th International Conference
on World Wide Web, Budapest, Hungary, 640-651 (2003)

[22] Shafer G., A Mathematical Theory of Evidence, Princeton
University Press (1976)

[23] Massa P., Avesani P.,Trust Aware Bootstrapping of
Recommender Systems, in proc. ECAI Workshop on
Recommender Systems (2006).

-40-

Ontology Guided Dynamic Preference Elicitation

Gil Chamiel and Maurice Pagnucco
School of Computer Science and Engineering
The University of New South Wales and NICTA

NSW, Sydney 2052, Australia
{gilc|morri}@cse.unsw.edu.au

ABSTRACT
A challenge for preference based recommender systems is to elicit
user preferences in an accurate and efficient manner. Eliciting pref-
erences from the user in the form of a query that is then used to
filter items from a database can result in a coarse recommenda-
tion with numerous results returned. The problem lies in the user’s
knowledge concerning the items among which they are searching.
Unless the user is a domain expert, their preferences are likely to
be expressed in a vague manner and so vague results (in the form of
irrelevant alternatives) are returned. On the other hand, the advent
of the world wide web has delivered an abundance of data at our
fingertips. Information gathered from the web, reduced to struc-
tured ontologies, can prove useful in focussing preference elicita-
tion mechanisms.

In this paper we present a preference elicitation process which
allows users to communicate their preferences in a simple manner,
through examples presented to them. The system then makes use
of an ontology model, based on expert information and social web
resources. It elicits the user’s preferences guided by this ontology
in an interactive and dynamic manner. We show that this leads to
more effective recommendations.

We evaluate our work through empirical experiments and discuss
the results in terms of preference elicitation coverage as well as the
prediction accuracy of the preference model.

1. INTRODUCTION
Modelling user preferences and exploiting preferential informa-

tion to assist users in searching for items has become an important
issue in product recommendation. Eliciting user preferences in an
accurate manner is a difficult and challenging task. In most cases
the user lacks deeper, expert knowledge of the domain to allow for
a more discriminating recommendation to be determined but they
know what they like. Furthermore, even if they are aware of some
of their preferences, it may be difficult for them to express these
explicitly in a formal language.

In this paper we develop techniques for eliciting formal prefer-
ences from the user in a seamless fashion that hides the technical
details. In our work a crucial desiderata is that the user does not

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

need to know anything about the attributes that describe items. We
focus on the problem of determining the most appropriate queries
to present to the user in order to accurately elicit their preferences.
We do so in an interactive manner which focuses on the user expe-
rience by utilising ontological information available on the World
Wide Web through social web resources and expert libraries. By so
doing we develop a complete system for personalisation that cush-
ions the user from having to know the formal details of how prefer-
ences are represented and how preference queries over a database of
items are formulated. We define four types of preference elicitation
queries and show how the dynamics of these methods are designed
to gather sufficient information from the user to quickly and accu-
rately determine their preferences. This is the main contribution of
the paper. We also show how these processes can be achieved more
efficiently by clustering the item space. Finally, we briefly discuss
how we use standard statistical methods together with these ideas
in order to establish the user preference profile.

Research on personalisation has provided a rich literature in rec-
ommendation systems [1, 2, 3]. In more direct relation to prefer-
ence elicitation, [4] provides a significant framework for formalis-
ing an elicitation process. However, this framework assumes user
familiarity with the domain which contradicts the assumption of
this research. [5, 6] model preference elicitation in terms of utility
elicitation but these processes are not directly guided by a model
of the data. Previous work in supplementing user preferences with
ontological information is limited. Ontology based similarity sys-
tems have been presented in [7, 8] but provide for only basic fea-
tures. [9] provide methods for augmenting collaborative product
recommendation with information derived from taxonomies. How-
ever, none of these approaches have tackled the entire problem of
eliciting formal preferences from a user and enhancing them with
ontological information in an interactive manner. It is this problem
that we address here in its entirety.

1.1 Motivating Example
One of the most obvious domains in which to evaluate the tech-

niques developed here is that of user musical preferences. When
it comes to music selection, people often express their preferences
in terms of individuals, either via their favourite artists or simply
by pointing to pieces of music which they prefer or do not pre-
fer. However, people seldom possess a deep understanding about
the features and characteristics behind the music and thus may find
it difficult to search for new music based on their personal tastes.
Fortunately, in the World Wide Web there exist digital libraries
which contain information composed by experts in this domain or
by users with special interests. One such major public library is
MusicBrainz1 which is essentially a social web service in the mu-

1http://musicbrainz.org/

-41-

jannach
Rechteck

Thing

MusicGenre

Jazz

Rock ElectronicFusion Big Band

Alternative Rock New Wave Prog Rock

Dance Breakbeat Ambient Downbeat

Trance House Techno Trip Hop Drum&Bass

Prog Trance Psytrance

Grunge Indie Rock

Figure 1: An Example Ontological Concept Hierarchy of Music
Styles

sic domain. Through this service, users can input information in a
structured manner from which it is relatively easy to infer an ontol-
ogy.

For example, consider the concept hierarchy in Figure 1. This
information is composed by musical experts and describes a hier-
archy of musical styles. While information such as this is well un-
derstood and formalised by domain experts, we do not assume the
user has extensive knowledge of the domain at all. Still this infor-
mation can be readily exploited when reasoning with preferences.
Note that in reality these structures tend to be far richer than this
example and often describe an attribute in the domain in a compre-
hensive manner. In our work, we remedy this problem by eliciting
complex user preferences via simple queries which the user may
feel more comfortable answering. We illustrate our ideas through
examples from the music domain and provide experimental results
in music preference elicitation to evaluate our approach. However,
it is important to note that the techniques we develop are general
and can be applied to a variety of domains.

2. BACKGROUND
We wish to express preferences formally and in a way that allows

us to query a database of items using these preferences. In this sec-
tion we cover the necessary background to understand how we can
query a database with preferences and, more specifically, how we
can query an ontology-based database with preferences. In partic-
ular, we will see how we can utilise the structure of an ontology to
more accurately reason with preferences so as to provide the user
with a recommendation or an elicitation query.

2.1 Basic Preference Querying
In the context of database systems, [10] introduce the ability to

query with preferences using an extension of SQL. The user can
express their preferences as soft constraints and will receive tuples
which best matchthose constraints. This approach is referred to as
the BMO (Best Match Only) query model in which a tuple will find
its way into the final result set if there does not exist any other tuple
which dominatesit, i.e. better satisfies the preference constraints.
Preference constraints in this framework can be expressed through
standard operators in terms oflikes/dislikes(e.g. =, <>, IN) and
numeric constraints (e.g.<, >=, BETWEEN andAROUND). In order
to allow complex preference construction, two binary preference
assembly operators are introduced, namely, theParetooperator for
considering two preference constructs as equally important, and the

Cascadeoperator for prioritising one preference constructor over
another.

The SPARQL query language is a W3C Recommendation and
considered to be a vital tool for querying ontological information.
[11] introduces an extended version of SPARQL (referred to as P-
SPARQL) which follows the same ideas as [10] in introducing pref-
erences as soft constraints into the language. It forms the basis of
the implementation of our approach.

2.2 Utilising Ontological Structure for Query-
ing with Preferences

In previous work [12] we extended P-SPARQL by exploiting
the information in an expert supplied ontology to further refine
the results of preference queries. This work solves the problem
that plagues coarse preference queries, namely matches are not
sufficiently distinguished. It also allows for the construction of
similarity-based queries. We only present the basic ideas here and
refer the interested reader to [12] for a more extensive coverage of
these details.

In order to exploit the hierarchical structure of an ontology, we
developed a method for computing categorical similarity between
concepts in aTBox. We use this similarity method for perform-
ing preference querying over ontological information. We intro-
duced a new Boolean operatorSim(C1, C2) (is similar to) that
tells whether one binding result (b2) is preferred to another (b1)
w.r.t the user preferenceP :

b1 ≺P (C0)b2 ⇔

Sim(C(b1), C0) < Sim(C(b2), C0)
(1)

whereC0 ∈ Concepts is a user preference concept,b1, b2 ∈
ResultBindings andC(bi) is the value bound to the relevant vari-
able in the result bindingbi w.r.t C. In other words result binding
b2 is preferred to result bindingb1.

EXAMPLE 1. Suppose we would like to query music albums
while preferring albums of style similar to Alternative Rock mu-
sic (as the highest priority) and then albums released around the
year 2001. Our query has aPREFERRING section as follows:

PREFERRING
?style∼= music:AlternativeRock

CASCADE
?year AROUND 2001

Where∼= is the syntactic version of the above similarity operator
Sim(C1, C2).

Note that by introducing a new Boolean operator we do not change
the notion of domination querying. We still have the ability to com-
pare two result bindings to obtain the preference domination rela-
tionship between them. There are many ways to compute the sim-
ilarity between concepts in an ontology, each reflecting a different
rationale. In [12] we develop a novel similarity method, based on
[13], which has three interesting properties:

1. It considers two concepts more similar if they share more
specific information.

2. It respects theIS-A relation axiom which means that a con-
cept will always be considered more similar to any of its sub-
concepts than other concepts.

3. Within a sub-graph and given a preference concept, it will
consider a concept more similar to this preference concept
according to the communicated level of specificity described
by this preference concept.

-42-

Property 3 means that when the user specifies a certain preference
concept, the sub-concepts below this concept will be ordered ac-
cording to their distance to this preference concept (the ‘closer’ the
distance, the more similar they are). The intuition behind this is
to respect the user’s communicated level of specificity (given by
the depth of this preference concept in the ontology) considering
concepts which are ‘closer’ to this level of specificity to be more
similar. This is measured by the following similarity metric which
determines the similarity of conceptsC0 andC1.

Sim(C1, C0) =
2 ∗N3

N1 +N2 + 2 ∗N3 + AV G
(2)

WhereN1, N2 are the distances from the conceptsC0 andC1 to
their MRCA (most recent common ancestor) respectively andN3

is the distance from this MRCA and the root of the ontology (as-
suming the most general concept is the OWL conceptThing),AV G
is the average distance ofMAX to the depth of the conceptsC0

andC1 andMAX is the length of the longest path from the root
of the ontology to any of its leaf concepts. Note that in practice
we then normalise the similarity measurement to be between 0 and
1 by dividing it by the similarity of the preference concept to it-
self. This way we ensure that the similarity between the preference
concept and itself will always be 1 (which accords with intuition).

EXAMPLE 2. In our example (Figure 1), suppose we would like
to calculate the similarity values of music styles in relation to the
user preference concept Trance. The concept Ambient will have
the similarity valueSim(Trance,Ambient) = 2∗2

2+1+2∗2+1.5
=

0.47 while the concept class Techno will have the similarity value
Sim(Trance, T ecℎno) = 2∗3

1+1+2∗3+1
= 0.67. Therefore, Techno

will be considered more similar to Trance than Ambient. However,
the similarity value between Trance and Techno will be smaller
than the similarity value between Trance and any of its sub-classes,
e.g.0.84 for the similarity between Trance and ProgressiveTrance.

2.3 Querying with Complex Preferences
This idea can be easily extended to the case where we have

elicited the user preferences in terms of a partial pre-order rather
than a single concept [14]. We would still like to be able to query
our database of items with these preferences. The idea is to turn
this partially specified preference ordering into a total pre-order by
“filling out” (or completing) the user preferences with information
from the ontology while utilising the notion of similarity. The po-
sition of every concept in the total pre-order will be determined by
looking at their maximal similarity to any of the user ordered con-
cepts. Concepts which are most similar to a user ordering concept
will be then ordered according to their similarity to it. The intu-
ition behind this is that we exploit the ordering given to us by the
ontology (w.r.t a similarity measurement) without contradicting the
preference ordering explicitly expressed by the user. Note that this
also allows expressing indifference between two concepts.

EXAMPLE 3. The preference

{AlternativeRock, ProgRock}THEN {Electronic}

means that the user prefers a song with styleAlternativeRock
or ProgRock to one with styleElectronic. Given a similarity
method with the semantics mentioned above, and given the ontol-
ogy of music styles above, the total pre-order created will be:

{AlternativeRock,ProgRock}
{Grunge,IndieRock}
{other rock concepts}

{Electronic}

{Ambient,Breakbeat,Dance,Downbeat}
{other Electronic concepts}

AlternativeRockandProgRockperfectly match the first preference
and appear at the top of the total pre-order. Concepts are then
ordered according to their similarity to these preference concepts
until we reach a concept more similar to the second preference: this
is the conceptElectronic(which perfectly matches the second pref-
erence). Concepts are then ordered according to their similarity to
Electronicso as to complete the total pre-order.

Another very essential enhancement this work provides is the abil-
ity to query the top-k elements in relation to the user preferences
(in addition to querying the best match only) while preserving the
qualitative nature of our reasoning. An implementation of these
methods has been completed based on theARQSPARQL query
engine (aJenabased query engine).

3. DYNAMIC PREFERENCE ELICITATION
The goal of our work is to provide users with personal recom-

mendations that accurately reflect their preferences. In this paper,
we concentrate on thepreference elicitation problem, i.e. the prob-
lem of selectingpreference elicitation queriesto present the user
in order to elicit their preferences. The resulting preferences are
subsequently used to query a database of items as explained in the
previous section. More accurately, we focus on the problem of se-
lecting a series of such queries in an iterative and dynamic manner,
i.e. with respect to both the user response to the queries presented
to them as well as the system aim to cover certain possible pref-
erences during this process. The attribute space of the domain, in
our case, is defined via a domain ontology provided by a domain
expert or social web resources which classify items in the domain
according to multiple attributes. It is also important to point out
that these items could be multiply classified to some attributes, i.e.
have more than one value on certain attributes. This will influence
the type of P-SPARQL queries we will choose in order to select
and present items to the user (as opposed to more straightforward
query relaxation techniques).

3.1 User Interaction
As described above, a basic assumption in our work is that users

do not possess the expert knowledge which allows them to pre-
cisely and explicitly communicate their preferences in terms of the
attributes in a domain. However, they may well have preferences
which it is our job to elicit from (and for) them. Since we can-
not query the users about those attributes directly, we will limit
our preference elicitation queries to ranking individuals only and
collect the information associated with them, building a preference
model as we go. More specifically, the user is presented with indi-
viduals and asked to rate them as eitherliked, dislikedor neutral.
With this feedback (see top-left of Figure 2) the user’s predicted
preference order is modified by combining the statistical score and
confidence interval for how much an attribute value is liked by the
user to produce a partial pre-order representing their preferences.
This process continues again with the elicitation method moving
betweenexplorationandexploitationphases in order to determine
which item to present to the user next for their consideration and
also to ensure that a sufficient cross-section of the item space is
presented in order to obtain an accurate preference order.

We focus on the elicitation of user preferences by developing an
elicitation technique that is itself guided by the expert supplied on-
tology. We will then show how this process can be made more
efficient by clustering the items in the ontology. In the rest of
the paper we will present this preference elicitation process and

-43-

Figure 2: A High-Level Schema of the Preference Elicitation Process: users express their preferences over individuals presented
to them (‘Feedback’ box in the figure). The system will then update their preference profile consisting of a partial pre-order over
certain attributes as well as the user ranking history. The system will then consult an ontology in order to guide the next elicitation
query (in terms of a new individual to be ranked – ‘Next Item Selection’ box). The system goal is to obtain confidence in previously
elicited preferences (exploitation) as well as to cover new preferences (exploration).

its clustering-based extension. We also briefly discuss the building
of a preference model on behalf of the user and its evaluation.

3.2 Ontology Guided Preference Elicitation
As described above, the goal is to elicit implicit user preferences

over some predefined attribute space through the rankings of in-
stances that the system offers to the user. Once we have enough in-
formation about the user’s rankings, we can start building the user
preference profile. The dynamics of this process are designed so
we can confidently elicit as many preferences as possible and at the
same time allow for an interesting interaction between the user and
the system. The idea here is to have a trade-off between wanting to
learn more about the current hypothesis regarding the user’s pref-
erences and wanting to more widely explore the user preference
hypothesis space as well as keeping the user happy and engaged.
In the first case, we would like to become more confident about the
user preferences in a particular area of the ontology while in the
second case we would like to explore more areas in order to dis-
cover more preferences. From the user perspective we can view this
trade-off in terms ofexploitationof previously elicited preferences
andexplorationof new (as yet unrevealed) user preferences. Algo-
rithm 1 shows the main interaction loop the system follows. At any
given stage, we will look at a fixed size window of the user’s last
interactions (via the global variablewindow) in order to determine
the nextpreference elicitation query type. We define four types of
preference elicitation queries, namely:similarity queries, queries
with controlled dissimilarity, exploration queriesandexploitation
queries. Similarity querieswill search and offer the user an item
similar to those last seen;queries with controlled dissimilaritywill
return an item which is less similar to these items (as determined
by the ontology);exploration querieswill return an item which is
classified to sufficiently different attribute values to items last pre-
sented whileexploitation querieswill return an unseen item which
holds a high value of information (see Section 3.2.3). At any stage
the system has to make a decision in regard to the next preference
elicitation query (see Algorithm 2), which determines the dynam-
ics of the system. In each of these queries we call the function
getItemRelated() to return items at the top, middle or bottom

Algorithm 1 Elicit Preferences

elicit()

window ← {}
loop

query ← nextPreferenceQuery()
response← userResponse(query)
window ← window ∪ {query, response}
updatePreferenceOrdering(query,response)

end loop

of the ordered result set. We discuss the main ideas behind these
decisions in the remainder of this section.

3.2.1 Similarity Queries
When receiving a positive response from the user, it is quite nat-

ural to form a hypothesis which entails that the information we
are encountering at the current stage of elicitation is classified to
attribute values which will be highly ranked in the user prefer-
ence profile. Querying the user about similar information is de-
sirable in order to either gain further confidence in this hypoth-
esis or alternatively contradict it in which case we will conclude
that these high rankings were due to noise. The way we achieve
this is by executing similarity-based P-SPARQL queries which re-
turn the top-k individuals in relation to the current attribute values.
Due to the nature of these selections, the resulting individuals will
be classified not only to the exact same attribute values the user
has ranked highly but also to values which are highly similar: the
proceduregetItemsRelated(item,x, y) executes a P-SPARQL
query and returns itemsx to y when ordered w.r.t the attributes
attr(1) . . . attr(n) associated with a givenitem wherex andy
specify an integer range of records. A simplified version of such a
query is given below:

SELECT RECORD x TO y
PREFERRING

attr(1)∼= item.attr(1)
AND

-44-

Algorithm 2 Next Item Selection

nextPreferenceQuery()

possibleQItems← {}

queryType← establisℎQueryType()

if queryType = Similar then
possibleQItems← getItemsRelated(lastQItem,1, k)

else ifqueryType = ControlledDissimilarity then
possibleQItems← getItemsRelated(lastQItem,k, l)

else ifqueryType = Explore then
possibleQItems← getItemsRelated(lastQItem,l,m)

else ifqueryType = ExploitPreferences then
possibleQItems← getItemsWitℎHV I()

end if
return rand(possibleQItems)

Algorithm 3 Establish Preference Query Type

establisℎQueryType()

1: if ∣window∣ < winSize or negResponse(window) ≤
negTℎr then

2: queryType← Similar
3: else ifglobalNegResponse() ≤ globalNegTℎr then
4: if previousQueryType = Similar then
5: queryType← ControlledDissimilarity
6: else
7: queryType← Explore
8: end if
9: window ← {}

10: else
11: queryType← ExploitPreferences
12: window ← {}
13: end if
14: return queryType

attr(2)∼= item.attr(2)
. . .
AND

attr(n)∼= item.attr(n)

We keep gathering preferential information about these values until
a certain threshold is met. This threshold will also be influenced by
the number of negative responses we receive from the user where
in case this number is high, the number of iterations we will spend
on the current values (e.g. current branch in the ontology) will be
reduced. Algorithm 3 shows the management of these parameters
which will establish the type of preference elicitation query we will
use next. We adopt this type of query when the window of user
interactions has not yet reached its maximal size and the response
we get from the user is not negative enough (line 1).

EXAMPLE 4. Suppose the user has ranked an item classified
to music stylesHouseand Technoand with the release year 2002.
The P-SPARQL query with respect to this item will then be:

SELECT RECORD 1 TO k
PREFERRING

?style ∼= :House
AND

?style ∼= :Techno
AND

?releaseYear∼= 2002

Algorithm 4 Select Items with High Value of Information

getItemsWitℎHV I()

partialPreorder← collectPreferences()
totalPreorder← computePreferences(partialPreorder)
value← null
i = 0
while value = null do

if totalPreorder[i] /∈ partialPreorder then
value← totalPreorder[i]

end if
i++

end while
return getItems(value)

We will then randomly select an item from this result set and present
it to the user as the next elicitation query. We can assume that
this elicitation query item will have similar attribute values to the
previous one. For example, music stylesHouseand Trip Hop and
with the release year 2003.

3.2.2 Querying Diverse Items
Let us consider now the case where we have elicited a sufficient

amount of information about a certain branch in the ontology. We
would like to change our preference elicitation queries so that we
can elicit user preferences about other parts of the ontology. If the
reaction of the user was sufficiently positive in the previous phase,
in order to make the transition between items smoother and offer
a better user experience we select items within a limited distance
from the previous items. In this caseestablisℎQueryType will
return query typeControlledDissimilarity which will modify
the call togetItemsRelated by selecting elements from the mid-
dle of the result set (controlled by the parametersk and l pre-
determined as a function of the size of the item-space).

EXAMPLE 5. Consider the item ranked in Example 4 and sup-
pose we have now reached the stage where we would like to query
items with certain diversity to this item. We will execute the same
P-SPARQL query as before with the parametersk and l. We can
assume that the next elicitation query item will have attribute val-
ues which appear within a certain limited distance to the previous
one. For example, music stylesDanceandAmbientand the release
year 2000.

However, if the user’s response to the previous phase was not pos-
itive, then eliciting preferences from that particular area in the on-
tology may no longer be desirable and we can try moving further
afield. Since we are dealing with hierarchical structures, it is rela-
tively easy to control the selection of preference elicitation queries
and increase the level of dissimilarity our P-SPARQL query returns.
In that case we will execute anexploration querywhich will select
items from the bottom of the similarity query’s result set and will
return an item with greater distance than the last window. Note that
once we have selected an item via these query types, we will go
back to querying with similarity (which means we will reset the
window) until the threshold criteria will entail querying with cer-
tain diversity again.

3.2.3 High Value of Information
In many domains, users may have preferences over more than

one type of individual. In ontological terminologies, they may hold
preferences over different branches in the hierarchy. Therefore,
once we have gathered enough confidence in the preference elicita-
tion for a particular part of the hierarchy, it is important to be able to

-45-

explore different areas as well. In our work, preferential informa-
tion with ahigh value of informationare those preferences the user
holds which we have not yet revealed. In order to discover these
preferences we need to be able to explore individuals classified to
attribute values the system is uncertain about. Since we are dealing
with hierarchical structures, here again we can control the selec-
tion of preference elicitation queries. We will choose to select new
attribute values about which we are uncertain of the user prefer-
ences and which are highly similar to known preferences. The way
we achieve this is by computing the preferences we have obtained
from the user up to this point as a partial pre-order and then search-
ing for an attribute value which does not appear in this pre-order
but is similar to an attribute value which is highly preferred in the
order. The obtaining of a partial pre-order over a certain attribute
from ranked individuals is briefly discussed in Section 3.4. Once
we obtain the partial pre-order, we expand it to a total pre-order
(as described in Section 2.3) and select an attribute value which ap-
pears highly ranked in the total pre-order but does not appear in the
partial pre-order. Since this value did not appear in the partial pre-
order we can deduce that the user has not yet ranked sufficiently
enough items of this type. And since it appears highly ranked in
the ordering, it satisfies our High Value of Information criterion.
Algorithm 4 shows a simplified version of these ideas where the
getItems(value) procedure is assumed to execute a P-SPARQL
query selecting items with a certain attribute value which equals a
given value. In terms of user interaction, we will use this query
type in order to re-start the elicitation process when repeatedly re-
ceiving negative feedback from the user (line 3 in Algorithm 3).
Note that this preference query type is also used at the beginning of
every user session.

EXAMPLE 6. Suppose we have calculated the user preferences
as a partial pre-order in terms of music style and the resulting or-
dering is:

{AlternativeRock, ProgRock}THEN {Electronic}

Calculating the total pre-order, the music styleIndieRockwill ap-
pear in a high position in the total pre-order and will be used to
select the next preference query item (see Figure 1).

3.2.4 Complexity and Performance Issues
The main difficulty when it comes to database querying with

preferences is the complexity of queries. Even though the basic
ideas behind the Pareto and Cascade operators are simple, the na-
ture of comparison queries makes them quadratic in the number of
items. Since we are dealing with large item spaces and since the
execution of such queries could be very frequent, it is crucially im-
portant to make these queries more efficient. Furthermore, in our
case, when we wish to explore diverse items w.r.t a ranked item,
it is unnecessarily expensive to compare all particular individuals
to each other in order to get this desired effect. In order to avoid
that, it would be better to focus our attention on part of the item-
space. We do so by grouping our individuals into some high-level
clusters and reason over these clusters before we dive into the ac-
tual selection of particular preference query items. We discuss this
enhancement in the next section.

3.3 Making Preference Elicitation Faster with
Clustered Ontologies

There are many ways to cluster categorical and numerical in-
formation. In our work, we make use of a particular structure,
namelyexplicit semantic relations, which is knowledge described
in the ontology by way of direct semantic associations between in-
dividuals. This is usually done viaroles which describe a direct

semantic relation between individuals of the same type. For exam-
ple, similarTo : Artist 7→ Artist to describe that one artist is
similar to another. These structures can be viewed as weighted or
unweighted graphs in which elements of the item-space are nodes
of the graph and the semantic relation determines the edges (e.g.
similarTo). We find that in many domains there exist classifi-
cations which form this kind of structure and induce a semantic
network and in some cases a similarity network. In our example,
there exists a similarity network between artists, available in music
libraries etc., which can be viewed as a graph (in our case, an un-
weighted graph) and allows us to generate a high level hierarchical
clustering structure.

3.3.1 Clustering Semantic Relatedness
The main idea behind clustering similarity graphs is to look for

highly connected sub-graphs. The way this is done is through meth-
ods which are based onminimum cut treeswithin the graph. Given
a graphG(V,E), a cut is a set of edges whose removal will dis-
connect the graph. A minimum cut is a cut with a minimal num-
ber of edges. [15] presents a clustering algorithm which computes
minimal cuts iteratively and looks for sub-graphs with a high level
of connectivity. At the end of this process, the graph will be par-
titioned into j clusters wherej is the number of clusters and is
unknown at the beginning of the process. In our work we adopt
this technique since it has a simple generalisation into a hierarchi-
cal clustering method. This is a very desirable effect since we are
dealing with ontologies which treat hierarchical structures straight-
forwardly. The resulting cluster structure gives a high-level classi-
fication of individuals with some similar characteristics.

3.3.2 Querying the Clustered Item Space
The basic idea behind our enhanced preference elicitation tech-

nique is similar to what we have seen before. The main difference,
now that we have our items clustered, is that on every elicitation
query, we will first determine which cluster we would like to select
from and then execute the P-SPARQL query limiting the search
to that cluster (and thus limiting the complexity to the size of the
cluster). Algorithm 5 (which now replaces Algorithm 2) shows the
revised preference query item selection procedure with clustering.
The selection of the particular cluster will depend on the preference
query type and the cluster of the item previously ranked according
to the same principles we discussed in 3.2.

3.4 Building the Preference Model
During the preference elicitation process, users encounter a va-

riety of different items whose attributes are described in terms of
concept classes. These concept classes are used to represent their
preferences. We now build a partial pre-order preference relation
over those classes on behalf of the user. The way we approach this
is through standard statistical reasoning where we look at the mean
score of individuals classified to each class taking into account the
confidence of this score. For each concept class, we compute its
score and confidence. The score of a class is measured in terms of
the probability that if we draw an individual classified to this class,
it will be ranked positively, negatively or neutrally. A requirement
for a class to be included in the partial pre-order is that its con-
fidence measure is at most equal to some predetermined constant
which determines how sparsely ranked a concept might be to be
included in the partial pre-order. We will order the classes in the
partial pre-order according to their score and confidence where two
classes will be ordered at the same level if they do not have a sig-
nificant statistical difference. This is computed in relation to their
overlapping confidence interval ratio. This partial pre-order pref-

-46-

Algorithm 5 Next Item Selection (revised)

nextPreferenceQuery()

possibleQItems← {}

queryType← establisℎQueryType()

if queryType = Similar then
c← lastQItem.cluster
possibleQItems← getItemsRelated(lastQItem,c)

else ifqueryType = ControlledDissimilarity then
c← getSimilarCluster(lastQItem.cluster)
possibleQItems← getItemsRelated(lastQItem,c)

else ifqueryType = Explore then
c← getDiverseCluster(lastQItem.cluster)
possibleQItems← getItemsRelated(lastQItem,c)

else ifqueryType = ExploitPreferences then
c← getClusterWitℎHV I(lastQItem.cluster)
possibleQItems← getItemsWitℎHV I(preference, c)

end if
return rand(possibleQItems)

Figure 3: Overlapping Confidence Intervals Example

erence model will be then expanded to a total pre-ordering using
(Section 2.3). Due to lack of space, we do not present the mathe-
matical details of this method. However, this can be easily derived
using standard statistical inference.

EXAMPLE 7. Consider the scoring statistics of four classes as
gathered by the system according to user responses in Figure 3
given in terms of confidence intervals[0, 1]. Computing the over-
lapping confidence interval ratio of classesA andB, we can infer
that A andB should be considered at the same preference level.
On the other hand, classC will be strictly preferred over classA.
Similarly, we can compute the overlapping confidence interval ra-
tio of classesB andC. The resulting partial preference pre-order
in this example will beC ર {A,B} ર D.

4. EXPERIMENTAL RESULTS
We evaluate our preference elicitation methods through a series

of experiments in the domain of music. We have implemented a
music preference elicitation system we callThe Music Preference
Explorer which selects and suggests music to users according to
the preference elicitation methods described above. We ran an ex-
periment with the system and several users.

4.1 Data Model
The data model we use is an ontology we collected from infor-

mation available on the web. The ontology consists of 134 artists
and around 1200 tracks from 338 albums of popular rock, pop and

electronic music. We created a hierarchy of 137 styles which is ar-
ranged as a DAG and classifies each album to at least one style (and
around four on average). We also collected similarity information
between artists and clustered our data set into 26 different clusters
arranged hierarchically according to the method described in 3.3.
The cornerstone for this dataset is theMusicBrainzlibrary. How-
ever, since this is a new service, some classifications needed to be
collected manually from other resources on the web.

4.2 User Trials
When a user logs into the system, they are presented with a piece

of popular music and can specify their ranking as one of the fol-
lowing options: they can either say they like the music they are
listening to, they do not like it or that they are not sure about their
preferences. The system then collects those rankings and gradually
builds a preference model on behalf of the user in terms of the mu-
sic style classified. The system executes the preference elicitation
cycle we described in 3.2. If the user responds positively to certain
types of music, the system will suggest music which is similar ac-
cording to its model. However, it will gradually select music with
a different style and at some point explore styles which are quite
different (and notify the user that it has done so). If a user gives a
negative response to a certain type of music, this process will occur
faster. We ran the trial on 22 users and present the results in the
following section.

4.3 Results
We measure the performance of our methods in terms of the pre-

diction accuracy of the elicited preference model as well as the cov-
erage of different preference levels.

4.4 Preference Model Accuracy
Our first test measures the accuracy of the elicited model by try-

ing to predict the user response on random tracks according to the
created preference model. Figure 4 shows the accuracy of correctly
predicting whether a user will say they like a piece of music and
when they say they will dislike it. We compute the mean rank of a
track (according to its classified information) and compute a thresh-
old (depending on the number of preference levels the user holds)
to differentiate between predicting whether the track will be liked
or otherwise. In order to measure the growth in accuracy, we recre-
ated the user ranking cycles by first building their preference model
using the first 20 tracks (in order) and gradually adding tracks until
we used all the tracks they had ranked. We have clearly shown a
growth in prediction accuracy and reached over 80 percent accu-
racy on average from around 160 examples. Note that these results
were achieved by basically looking at a single (probably very cen-
tral) attribute and performing well on average.

4.5 Preference Coverage
Finally, since we are dealing with a dynamic process where our

methods are designed to cover different user preferences over time
by allowing the user to explore new preferences, we measure pref-
erence coverage in terms of preference ordering and clusters cov-
ered. Figure 5 shows the growth in the number of different prefer-
ence ordering levels we elicit over time. This includes the partial
pre-order computed through the statistical analysis described in 3.4
as well as the number of total pre-orders realised after augment-
ing this pre-order with further information from the ontology. This
gives some idea about the dynamics of the system and shows the
growth in elicited information over time. In addition to the number
of preference levels, we also measure the number of clusters the
user has visited since this is a very central part of the elicitation

-47-

cycle. Note that when reaching over 180 ranked items, the number
of preference levels starts to drop. This is due to the overlapping
confidence interval matching we described in Section 3.4: some
ordering levels are merged when gathering more statistical confi-
dence. Note also that when reaching this number of rankings, our
model prediction accuracy reaches around 85% (Figure 4). This
shows that the preference ordering matching was indeed justified
and better reflected the user’s true preference.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 20 40 60 80 100 120 140 160 180 200 220

P
re

di
ci

tio
n

A
cc

ur
ac

y

Tracks Ranked

Prediction Accuracy Progression

Minimum Predicition
Maximum Predicition

Average Predicition

Figure 4: Prediction accuracy progression: shows the accuracy
of predicting whether the user will like/dislike a track accord-
ing to the elicited preference ordering

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 20 40 60 80 100 120 140 160 180 200 220

Tracks Ranked

Preference Coverage Progression

Avg. Partial Order Levels
Avg. Total Order Levels

Avg. Clusters Visited

Figure 5: Preference coverage progression: shows the progres-
sion of preference ordering levels (partial and total) as well as
the number of clusters visited. Note that when reaching over
180 ranked items, the number of preference levels starts to drop
due to overlapping confidence interval matching as described
above, as the confidence grows

5. CONCLUSIONS
In this paper we have developed a preference elicitation method

which caters for a large class of problems in preference modelling.
In particular, we would like to elicit a preference ordering that can
be used as the basis of a formal preference query to a database of
items. However, on the one hand user’s are not adept at making
explicit their preferences and on the other, even those preferences
that could be made explicit, may be difficult for the non-expert user
to specify in a formal query language. The technique we developed
here provides a formal solution to this problem while at the same
time hiding the technical detail from the user. In our method, we

rely on a complex model of the domain at hand; namely a domain
ontology created by experts. We presented an interactive elicitation
process which is dynamic and is able to elicit many preferences by
covering large portions of the ontology. During this process, users
are presented with examples which they are asked to rank and a
system collects this information and builds a preference model on
their behalf. The dynamics of the process relies mainly on the in-
teraction between exploiting previously elicited preferences thus
suggesting similar examples and exploring new preferences. We
evaluated our methods through experiments run with several users
in the domain of music and show significant results in terms of the
preference model prediction accuracy as well as the coverage of
different preferences elicited during this process. For future work,
we intend to investigate the elicitation of more complex preference
models, i.e., dependency structures over multiple attributes as well
as a more advanced use of ontologies and semantic web features.
Another avenue for future work would be in the area of collabora-
tive filtering. We can aggregate the preference profiles of similar
users to provide a more accurate ‘collaborative’ preference.

6. REFERENCES
[1] Anand, S.S., Kearney, P., Shapcott, M.: Generating

semantically enriched user profiles for web personalization.
ACM Trans. Inter. Tech.7(4) (October 2007)

[2] Rashid, A., Albert, I., Cosley, D., Lam, S., Mcnee, S.,
Konstan, J., Riedl, J.: Getting to know you: learning new
user preferences in recommender systems. In: IUI, New
York, NY, USA (2002) 127–134

[3] Bradley, K., Rafter, R., Smyth, B.: Case-based user profiling
for content personalisation. LNCS1892(2000) 62–72

[4] Boutilier, C., Brafman, R.I., Hoos, H.H., Poole, D.: CP-nets:
A tool for representing and reasoning with conditional
ceteris paribus preference statements. JAIR21 (2003)

[5] Boutilier, C.: A POMDP formulation of preference
elicitation problems. In: AAAI. (2002) 239–246

[6] U. Chajewska, D.K., Parr, R.: Making rational decisions
using adaptive utility elicitation. In: AAAI. (2000) 363–369

[7] Middleton, S.E., Shadbolt, N.R., De Roure, D.C.:
Ontological user profiling in recommender systems. ACM
Trans. Inf. Syst.22(1) (2004) 54–88

[8] Schickel-Zuber, V., Faltings, B.: Inferring User’s Preferences
using Ontologies. In: AAAI 2006. (2006) 1413–1418

[9] Ziegler, C.N., Lausen, G., Schmidt-Thieme, L.:
Taxonomy-driven computation of product recommendations.
In: CIKM ’04. (2004) 406–415

[10] Kießling, W.: Foundations of preferences in database
systems. In: VLDB. (2002) 311–322

[11] Siberski, W., Pan, J.Z., Thaden, U.: Querying the semantic
web with preferences. In: ISWC. (2006) 612–624

[12] Chamiel, G., Pagnucco, M.: Exploiting ontological
information for reasoning with preferences. In:
Multidisciplinary Workshop on Advances in Preference
Handling. (2008)

[13] Wu, Z., Palmer, M.: Verb semantics and lexical selection. In:
ACL. (1994) 133–138

[14] Chamiel, G., Pagnucco, M.: Exploiting ontological structure
for complex preference assembly. In: Australian Joint
Conference on Artificial Intelligence. (2008)

[15] Flake, G.W., Tarjan, R.E., Tsioutsiouliklis, K.: Graph
clustering and minimum cut trees. Internet Mathematics1(4)
(2004) 385–408

-48-

Augmenting Collaborative Recommender by Fusing
Explicit Social Relationships

Quan Yuan, Shiwan Zhao
IBM China Research

Laboratory
Beijing, 100193, China

{quanyuan,
zhaosw}@cn.ibm.com

Li Chen
Department of Computer

Science, Hong Kong Baptist
University

Hong Kong
lichen@comp.hkbu.edu.hk

Yan Liu
IBM T.J. Watson Research

Center
Yorktown, NY 10598

liuya@us.ibm.com

Shengchao Ding
Institute of Computing

Technology, Chinese Academy
of Sciences

Beijing, 100190, China
dingshengchao@ict.ac.cn

Xiatian Zhang
IBM China Research

Laboratory
Beijing, 100193, China

xiatianz@cn.ibm.com

Wentao Zheng
IBM China Research

Laboratory
Beijing, 100193, China

zhengwt@cn.ibm.com

ABSTRACT
Nowadays social websites have become a major trend in the
Web 2.0 environment, enabling abundant social data avail-
able. In this paper, we explore the role of two types of social
relationships: membership and friendship, while being fused
with traditional CF (Collaborative Filtering) recommender
methods in order to more accurately predict users’ interests
and produce recommendations to them. Through an ex-
ploratory evaluation with real-life dataset from Last.fm, we
have revealed respective effects of the two explicit relation-
ships and furthermore their combinative impacts. In addi-
tion, the fusion is conducted via random walk graph model in
comparison with via weighted neighborhood similarity ma-
trix, so as to identify the best performance platform. In-
depth analysis on the experimental data particularly shows
the significant improvement by up to 8% on recommenda-
tion accuracy, by embedding social relationships in CF via
graph model.

Categories and Subject Descriptors
H.5.3 [Group and Organization Interfaces]: [Collabora-
tive Filtering, Computer-supported cooperative work, Eval-
uation/methodology]; H.3.3 [Information Storage and
Retrieval]: [Information Filtering]

General Terms
Algorithms, Experimentation, Human Factors

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

Keywords
Recommender Systems, Collaborative Filtering, Social Re-
lationship, Random Walk

1. INTRODUCTION
In recent years, collaborative-filtering (CF) based recom-

mender systems have been widely developed in order to ef-
fectively support users’ decision-making process especially
when they are confronted with overwhelming information
(e.g. a large amount of product options that popularly ap-
pear in the current Web environment). There are two basic
entities considered by the recommender: the user and the
item. The user provides his rates on items (e.g. movies,
music, books, etc.) that he has experienced, based on which
the system can connect him with persons who have similar
interests and then recommend to him items that are pre-
ferred by these like-minded neighbors. In some cases which
don’t have rating values available, the user’s interaction with
items can also be considered. That is, if we can only get
the information that a user watched a movie, the ”rating”
is 1; otherwise it is 0. The recommendation method based
on this binary rating matrix is also named as log-based CF
[24]. The traditional approaches can be hence regarded as
implicit ways to infer the social relationship between users.
However, it inevitably brings the limitation when few users
rated or viewed few items (i.e. the sparsity problem), to
make it hard to infer such preference relationship. With
the increasing emergence of social network services, many
websites support online user communities, such as Youtube,
Last.fm, del.icio.us, and e-commerce sites including Ama-
zon.com and eBay.com. Community facilities are provided
so that users can create and access to their community infor-
mation and communicate with friends or members. For ex-
ample, on Last.fm (a popular music recommender website),
the user can establish friendship with others by ”finding peo-
ple” and/or join a group of users having similar music tastes
(e.g. through ”finding groups”).

We term this kind of community relationship as explicit
social relationship, since it is directly defined by users, rather
than inferred by the system. As a matter of fact, two types

-49-

jannach
Rechteck

Fusion

Explicit social relationships

Standard collaborative filtering recommenders

based on implicit relationship inferring

Friendship Membership

Figure 1: Fusion of Friendship and Membership into
Standard CF

of explicit relationships are commonly available on the cur-
rent websites (as in the example of Last.fm): friendship
and membership. For instance, users A and B are friends
given that A adds B in his friend list (or conversely), but
it does not refer that they must have similar music tastes.
On the other hand, if A and B join in the same group, it
indicates that they have the membership relation and are
likely with the similar interest (e.g. on ”Beatles” provided it
is the group’s title).

It is believed that explicit social relationship can be likely
applied to compensate the limitation of implicit relation-
ship inference approach and improve the accuracy of recom-
mender systems [1]. Some researchers have recently been
engaged in fusing such kind of information into traditional
CF methods [1, 15, 19]. However, to our knowledge, most
works purely concentrate on friendship data [4, 16]. Their
tentative studies unfortunately show that the fusion some-
times does not work well due to the friendship’s inherent
ambiguity as a relational descriptor [5]. Moreover, existing
fusion approaches have been mainly based on the rating-
matrix. It is in essence lack of exploration of other possible
ways that may be potentially more effectively able to fuse
the explicit social relationship with CF recommenders. As
the social data is inherently in a graph structure, fusion via
graph may be a good approach.

Given that the membership contains more information
implying the user’s preferences, such as his interest on the
music genre or singer as indicated by the group’s property
and his like-minded people involved in the same group, we
are interested in understanding whether this additional in-
formation could produce any practical benefits. Thus, in
this paper, our objective is to study whether and how to
best fuse both of membership and friendship, by means of
comparing their respective effects and potential combinative
impacts via different fusion platforms. We believe that our
study will shed light on the role and applicability of social
information in boosting collaborative intelligence of current
recommender systems. More specifically, our contributions
can be summarized as follows:

• We demonstrate the exact value of fusing explicit social
relationships into recommender systems. Particularly,
in some cases, the neighborhood of users learnt from
membership has been found more accurate than from
purely embracing friendship with traditional CF.

• We develop a framework to fuse and evaluate multiple
types of social relationships in a systematical approach
through weighted-similarity calculation. Moreover, we

propose a novel graph model to fuse the social rela-
tionship with rating matrix, and adopt random walk
algorithm to produce neighborhood similarities for rec-
ommendations. With a real-life dataset, we compared
it with the weighted-similarity approach and identify
the superior performance of graph fusion in improving
recommendation accuracy.

In the next section, we first provide a brief review of re-
lated work, and then propose a systematical approach to
study the use of explicit social relations and incorporate
them in collaborative recommenders via graph model in ad-
dition to via weighted-similarity. Next, we show the ex-
periment design and results analysis, followed by the final
section of conclusion and future work.

2. RELATED WORK
We review the related literature of fusing heterogeneous

data sources with rating matrix to improve standard CF
from two perspectives: Fusion of Social Relationship, and
Graph-based Recommender Algorithm.

2.1 Fusion of Social Relationship
Since popular user-based and item-based CF algorithms

that only rely on user-item rating matrix always suffer from
sparse and imbalance of rating data, researchers have started
to incorporate other data sources to improve standard CF.
Balabanovic et al. [6] were among those who first investigate
content-based systems that make use of the descriptive data
about an item. Melville et al. [7] enhanced CF by using
content of a movie, e.g., movie genre. Pazzani [8] investi-
gated hybrid methods using both of user data (demographic
information) and item data (content) for improving recom-
mendation accuracy.

Recently, with the increasing development of social web-
sites and appearance of social data, researchers have begun
to pay attention to the social data and explored its usage in
recommender systems. Konstas [21] adopted Random Walk
with Restart to model the friendship and social annotation
(tagging) in a music track recommendation system. Gol-
beck [11] used trust relationship in social network to improve
movie recommendations. [15] used social network data for
neighborhood generation. In a Munich-based German com-
munity, friends are compared to neighbors of collaborative
filtering for rating prediction. Their results showed that the
social friendship can benefit the traditional recommender
system. [19] proposed an online social recommender system
attempting to use more social information for recommen-
dation generation. The social data they introduced are the
friendship of users (from GeekBuddy), which was used to
refine the description of each user. [10] proposed a factor
analysis approach based on probabilistic matrix factoriza-
tion to solve the data sparsity and poor prediction accuracy
problems, by employing both of users’ social network in-
formation and rating records. This work also concentrated
on using friendship to improve recommendations. However,
it has been shown that online friendship sometimes does
not work well due to its inherent ambiguity as a relational
descriptor [4, 16]. Compared to online friendship, online
community membership contains more information about
users’ preferences. [2] used membership for recommending
online communities to members of the Orkut social network.
However, their recommendations were on a per-community,

-50-

rather than on a per-user basis. I. Guy et al. [22] [23] built
a people recommendation system named SONAR by lever-
aging data from multiple channels including membership in
project wiki.

2.2 Graph-based Recommender Algorithm
The computation of user/item similarity plays a key role

in user/item-based collaborative recommenders. Popular
measurements of user similarity are Cosine similarity and
Pearson’s correlation coefficient (see [9] for examples) based
on the user-item rating matrix. The limitation is that they
only use the local pairwise user information for neighbor-
hood searching.

Recent years, graph-based methods have been introduced
to model relations between users and items from a global
perspective, and been used to seamlessly incorporate het-
erogeneous data sources into the traditional user-item rating
matrix. Huang proposed a two-level graph model for prod-
ucts [18], in which the two layers of nodes represent products
and customers respectively, and three types of links between
nodes are: the product-product, the user-user, and the user-
product link. The recommendation is generated based on
the association strengths between a customer and products.

Random walks on graph have been extensively discussed
[12] and shown a rather good performance in the recom-
mendation area. M. Gori and A. Pucci proposed a random-
walk based scoring algorithm, ItemRank [14], which can be
used to rank products according to expected user prefer-
ences, so as to recommend top ranked items to potentially
interested users. Similarly, Baluja et al. [3] made video rec-
ommendations for YouTube through random walk on the
view graph, which is a bipartite graph containing users and
videos where links are visiting logs of users on videos. F.
Fouss et al. [13] presented a new perspective on charac-
terizing the similarity between elements of a database or,
more generally, nodes of a weighted and undirected graph.
This similarity called L+, the pseudoinverse of the Lapla-
cian matrix of the graph. Their experimental results on the
MovieLens database showed that the Laplacian-based simi-
larity computation performed well in comparison with other
methods.

However, the limitation of related work in the ”fusion of
social relationship” (the first subsection) is that few have
considered the potential positive role of membership. More-
over, in the related work on ”graph-based recommender al-
gorithm”, no work on its performance as a fusion platform
has been conducted. In this paper, we therefore aim at in-
vestigating how to effectively fuse both of friendship and
membership into CF algorithm via random walk approach
in order to improve the performance and solve the sparsity
problem. To the best of our knowledge, our work is one of
the first attempts to use both friendship and membership to
enhance recommender systems.

3. FUSING SOCIAL RELATIONSHIPS INTO
RECOMMENDERS

In this section, we mainly take into account of two types
of explicit social relationships: friendship and membership,
and propose a generic framework to fuse them with the user-
item rating matrix. Given that user-user similarity com-
putation is crucial to collaborative recommenders, a more
accurate user-user similarity always leads to better recom-

User

Item

+

User

User

User

Group

Friendship Matrix

Membership Matrix

User-Item

Similarity

Friendship

Similarity

Friendship Enhanced User Preference

User-Item

Similarity

Membership

Similarity

Membership Enhanced User Preference

Figure 2: Fuse Friendship and Membership into Col-
laborative Recommender via Weighted-Similarity

mendation results. Our fusion framework aims at leverag-
ing the two social relationships to strengthen the user sim-
ilarity calculation process by two means: one is combining
the user-similarity from friendship and/or membership with
similarity from rating matrix in a weighted approach; the
other is modeling the social relations and rating matrix all
in a graph, and then applying random walk on this graph to
compute the user similarity.

3.1 Fusing via weighted-similarity
In the rating matrix, we can view the preferences of users

as feature vectors. Every user vector consists of n feature
slots, one for each available item. The values used to fill
those slots can be either the rating rak that a user ua pro-
vides to the corresponding item ik, or 0 if no such rating
exists. Now, we can compute the proximity between two
users ua and ub, by calculating the similarity between their
vectors. For example, we can use the Cosine similarity for
this calculation as follows:

Similarity(ua, ub) =
Rua · Rub

||Rua ||||Rub ||
(1)

where Rua and Rub are two vectors of ratings from users ua

and ub respectively.
According to the user similarity calculated from the rat-

ing matrix, we give a detailed description of fusing social
relationships via weighted user similarity based on Fig 2.

When fusing friendship with user similarity from rating
matrix, we need to get a user similarity based on the friend-
ship firstly. We represent the friendship in the form of a
user-user matrix. If two users ui and uj are friends, then the
value of cell uij is set to 1, otherwise 0. Based on this user-
user matrix, we calculate a friendship similarity by adopting
Cosine Correlation, named Simfri. Next, when calculating
the final user similarity between ua and ub, we combine the
Simfri with Simui(user similarity calculated from user-item

-51-

matrix) in a weighted approach as follows:

Simui+fri(ua, ub) = λSimui(ua, ub)

+(1 − λ)Simfri(ua, ub)
(2)

The parameter λ is used to adjust the weight of Simfri and
Simui, the bigger the λ is, the rating matrix plays a more
important role in the combined similarity. Finally, we use
this combined similarity Simui+fri in finding neighbors for
each user.

When fusing the membership, firstly we also need to get
a user-user similarity based on the membership data. Since
membership is the relationship between the user and the
communities/groups he/she joined, a new type of entity was
introduced besides the two entities (user and item). We
concretely represent the membership in the form of a user-
group matrix, where the rows indicate users and the columns
indicate the groups joined by users. If a user ui joins group
gj , the value of cell uij is set to 1, otherwise 0. Based on this
user-group matrix, we can get a membership similarity by
using Cosine Correlation too, named Simmem. As for the
generation of final user-user similarity, a weighted formula
is applied where λ plays the same role as before.

Simui+mem(ua, ub) = λSimui(ua, ub)

+(1 − λ)Simmem(ua, ub)
(3)

Furthermore, we are interested in seeing what will happen
if two types of social relations are fused together with the
rating matrix. In this condition, we first calculate the user-
user similarity Simfri from friendship and Simmem from
membership independently, and then introduce two param-
eters: λ and β to adjust the weights of three data sources as
shown in the equation 4.

Simui+fri+mem(ua, ub) = λSimui(ua, ub) + (1− λ)

(βSimmem(ua, ub) + (1− β)Simfri(ua, ub))
(4)

At the first level, λ is used to adjust the weight between rat-
ing matrix and the other two social relationships; and then
β is used to adjust the remaining weight between friend-
ship and membership. The bigger the λ is, the rating ma-
trix plays a more important role; the bigger the β is, the
membership plays a more dominant role in the combined
user-user similarity.

After the computation of user-user similarity for finding
neighbors, the next step is to recommend items to users by
predicting each item’s ratings. The predicted rating ri,m of
a test item m for the user i is hence computed as:

ri,m =

∑N
j=1 sim(ui, uj) ∗ rj,m∑N

j=1 sim(ui, uj)
(5)

where rj,m is the rating of user uj on the item im, and
sim(ui, uj) is the similarity between the current user ui and
the neighbor uj . In fusing via weighted-similarity approach,
sim(ui, uj) can be similarity measures in equation 2, 3, and
4, depends on the fusing strategy and data used each time.

3.2 Fusing via Graph
In the “fusing via weighted-similarity” method, we cal-

culated the user-user similarity based on the static “local”
pairwise user information. As we know, social network is
inherently in a graph structure with the transitivity charac-
teristics as a key feature of social relations, therefore we have

been motivated to further use graph-based random walk al-
gorithm for modeling these social data (i.e. friendship and
membership). We think that the transitivity of the graph
will improve the computation of the similarity between two
users.

3.2.1 Graph Construction for Social Community
The first key issue is to construct a meaningful graph so

that the resulting similarity can truly reflects the prefer-
ence similarity between users. Considering a graph G =
(V, E, W), where V is the set of nodes (users, items or com-
munities, etc.), E is the set of edges which represent rela-
tionships between all types of nodes, and W is the set of
weights for all edges.

The relationship data in a social community can be in-
teractive relationship, such that user watched a movie or
listened to a song; or be social relationship like membership
or friendship. Let us use Last.fm which contains all types
of these data for example. It can be modeled by a graph
G in the following way: there are three types of nodes in
Last.fm, the user, artist (item) and group, and each ele-
ment of the user, artist and group corresponds to a node of
the graph; and the interactive relationship like a user lis-
tens to an artist, social relationship like user is a member of
a group, and user is a friend of another user is expressed as
an edge. When a random walker walks on the graph, the dif-
ference of node types were ignored, and we only care about
how many short paths existed between two nodes which have
directly impact on their similarity computation, so special
treatment is not needed for any type of nodes in our graph.

The weight wij of the edge connecting node i and node
j should have a meaningful value. Traditionally, we usually
deal with interactive data in the following convention: the
more frequent the interaction between node i and node j,
the larger the value of wij , and consequently, the easier the
communication through the edge. However, in the case of
social community, besides interactive data we also have so-
cial relationship, and they usually are not associated with
a frequent number, e.g. most users join a group only once,
and so is the same for adding friends. For the consistency
of the two types of edges and simplicity, we set the weight
of member of edge and friend of edge to be 1, and treat
listens to edge as follows: if a user listened to the songs of
an artist more than 3 times, then the edge connecting the
user and the artist was weighted 1. We require the weights
to be both positive wij > 0 and symmetric wij = wji, so
the graph we built is an undirected graph.

When handling friendship between users, there are several
approaches to transforming the pairwise similarity between
nodes of the same type (e.g. users) into a graph [17], such
as the ε-neighborhood graph, k-nearest neighbor graph, and
the fully connected graph. We choose the ε-neighborhood
graph to fuse the friendship on the graph, not only because
it has computational advantage by using a sparse represen-
tation of the data, but also because it can filter out the
noisy data so that we can create a concrete friend set for
each user. When constructing the ε-neighborhood graph,
we connect user-node pairs whose friendship similarities are
greater than ε. Given that the range of friendship similarity
is [0,1], the range of ε is also [0,1]. We enumerate ε in this
range with step 0.01, and finally we get the optimal ε.

When the graph was built, for the corresponding sym-
metric adjacency matrix A of graph G, the element aij was

-52-

defined as: aij = wij if node i is connected to node j and aij

= 0 otherwise. Thus, people who listen to the same artists
and join same groups, will be connected by a comparatively
larger number of short paths.

3.2.2 Random Walk and Similarity Measures
Random walk is a mathematical formalization of a trajec-

tory that consists of taking successive random steps. At each
step, the next node in the walk is selected randomly from
the neighbors of the last node in the walk. The sequence
of visited nodes is a Markov Chain [20], with the transition
probability:

pij =

{
1

d(i)
, if (i, j) ∈ E

0 , otherwise
(6)

where d(i) is the degree of node i.
From the viewpoint of collaborative recommender sys-

tems, finding accurate neighbor set for each user is the cor-
nerstone, so a good similarity measure on the graph is a
crucial step.

Fouss et al. [13] has discussed several approaches to com-
puting similarities between nodes of graph and their applica-
tion to collaborative recommendations, that mainly included
distance-based measure like ECTD, and inner-product based
measure like L+.

ECTD is the abbreviation for Euclidean Commute-Time
Distance. Average commute-time is the average number of
steps that a random walker, starting in node i (i 6= j), will
take to enter node j for the first time and go back to i,
represented as n(i, j). Average commute-time is symmetric

by definition, and it is a distance measure. n(i, j)1/2 is also
a distance in Euclidean space, and it is named as Euclidean
Commute-Time Distance.

L+ is the Moore-Penrose pseudoinverse of the Laplacian
matrix L. The Laplacian matrix L of the graph is defined
as, L = D - A, where D = Diag(ai.), with dii = [D]ii =
ai. =

∑n
j=1 aij , and A is the adjacent matrix of graph G.

Let e be a column vector with 1(i.e., e = [1, 1, . . . , 1]T , where
T denotes the matrix transpose), then L+ can be computed
with the formula:

L+ = (L − eeT /n)−1 + eeT /n, (7)

where n is the number of nodes. If we define ei as the
ith column of I, ei = [0, . . . , 0, 1, 0, . . . , 0]T (1 is in the ith
column), then we can explain the relation between average
commute-time and L+ in the form

n(i, j) = VG(ei − ej)
T L+(ei − ej), (8)

where each node i is represented by a unit vector ei in the
node space spanned by {ei}. It can be proved that the node
vector ei can be transformed into a new Euclidean space, and
the elements of L+(lij) are the inner products between these
transformed node vectors. Therefore L+ is a kernel matrix(a
Gram matrix) and can be used as a similarity matrix for the
nodes.

According to Fouss’ study, the inner-product based sim-
ilarity measure L+ provides better and more stable results
for collaborative recommenders, so we adopt L+ metric to
measure the similarity between users, which means in equa-
tion 5, sim(ui, uj) equals to lij in this case.

4. EXPERIMENTS

4.1 Data Sets
Traditional data sets used in the evaluation of collabo-

rative filtering systems, such as MovieLens, do not include
explicit social relationship, while in Last.fm, a popular so-
cial music site, community information is available so that
an entity-relation model can be generated which includes
the relationship between users and items.

For our purpose, we extracted two typical social relation-
ships: the friendship between users and the membership
which describes the user’s participation in groups, by ac-
cessing its Web Service APIs 1. Besides, we think it is more
meaningful to recommend artists instead of individual mu-
sic since music is variable while preference on artists is more
constant, so we use artist as the ”item” in our recommenda-
tions. A user and an item is linked if the user listened to
song(s) of the artist, and a user and a community is linked
if the user joined the group. The relationship between an
artist and a community is formed if the artist’s songs were
frequently listened by users in this group. There are also
links among users describing their friendship.

We concretely established an active data set consisting of
943 users, 1, 001 artists and 676 groups. There are 36, 424
records in the user-artist matrix which sparsity degree (per-
centage of zero values in the matrix) is 96.14%, and 7, 038
records in the user-group matrix which sparsity is 98.89%.
The total number of friendship of 943 selected users is 33776,
which means each user on average has 35.8 friends. Please
note that the rating matrix here is the user-artist matrix,
and if a user listened to song(s) of an artist, there is ”1” in
the corresponding cell.

By means of 5 fold cross-validation 2, each row (represent
a user) of the user-artist matrix is randomly split into five
different sets. For each time of experiment, four-fifths of of
the data is included in the training set and the other is used
as the testing data.

4.2 Evaluation Metrics
We adopted standard metrics in the area of information

retrieval to evaluate our recommenders. During each round
of cross-validation, we recommend and rank a set of poten-
tial artists for each user. We then compare the predicted rec-
ommendation list with true preferences on artists in the test
set, and compute precision, recall, and F-measure scores.

1. Recall. The score measures the average (on all users)
of the proportion (in percentages) of artists from the
testing sets that appear among the top n ranked list
from the training sets, for some given n. It should be as
high as possible for good performance. We computed
the recall from Top-1 to Top-20 artists(for a total of
1001 artists).

2. Precision. This metric measures the proportion of
recommended items that are ground truth items. Note
that the items in the profiles of the testing data rep-
resent only a fraction of the items that the user truly
accessed.

1The web page is http://www.last.fm/api
2The number of fold is the number of tested sets.

-53-

3. F-measure. F-measure is the weighted harmonic mean
of precision and recall. The equation is as follows:

F =
2 ∗ precision ∗ recall

(precision + recall)
(9)

In the following, we report the results of recommending
the top 1, 2, 5, 10 and 20 artists. At each pass, 50 users are
taken as neighbors based on different similarity measures for
recommendation.

4.3 Experiment Design and Results
At first, we evaluated the fusion approach via weighted-

similarity. A user-based collaborative filtering recommender
was first run on the user-artist rating matrix, resulting in the
baseline represented by CFUI (see Tables 1 to 3 respectively
showing precision, recall and F-measure scores).

Table 1: Precision of Fusion via Weighted-Similarity
Approaches

Precision Top 1 Top 2 Top 5 Top 10 Top 20

CFUI 29.93 25.12 19.09 15.23 11.33

WSfri+UI 29.67 25.33 19.64 15.51 11.48

WSmem+UI 29.44 25.49 19.58 15.33 11.40

WSfri+mem+UI 29.37 25.45 19.58 15.34 11.42

Table 2: Recall of Fusion via Weighted-Similarity
Approaches

Recall Top 1 Top 2 Top 5 Top 10 Top 20

CFUI 3.87 6.50 12.36 19.72 29.34

WSfri+UI 3.84 6.56 12.71 20.07 29.73

WSmem+UI 3.81 6.60 12.67 19.84 29.52

WSfri+mem+UI 3.80 6.59 12.68 19.86 29.58

Table 3: F-measure of Fusion via Weighted-
Similarity Approaches

F-measure Top 1 Top 2 Top 5 Top 10 Top 20

CFUI 6.85 10.33 15.01 17.19 16.35

WSfri+UI 6.80 10.42 15.43 17.50 16.56

WSmem+UI 6.75 10.49 15.38 17.29 16.45

WSfri+mem+UI 6.73 10.47 15.39 17.31 16.48

Then, we tried to fuse friendship with the rating matrix
and used λ to adjust the weight of rating matrix and friend-
ship while computing user similarity. Figure 3 shows how
F-measure changes with the changing of λ. It achieves the
peak when λ = 0.7, which means that the rating matrix
contributes to 70% percent of the weight while friendship
contributes to 30% in calculating the user-user similarity.
Specifically, results in the second rows of Tables 1 to 3,
represented by WSfri+UI , give the precision, recall and F-
measure scores when λ = 0.7. It can be seen that it is
better than the baseline, especially when returning top 5
recommendations (the improvement of F-measure achieved
up to 2.79%). In the process of tuning λ and β in the fol-
lowing, we considered the average score of Top-1 to Top-20
recommendations.

 8

 9

 10

 11

 12

 13

 14

 15

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F-
M

ea
su

re
(%

)

Lambda

Fusing friendship on User-Item Matrix

friendship fusion

Figure 3: F-measure changes as lambda change in
friendship fusion

 8

 9

 10

 11

 12

 13

 14

 15

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F-
M

ea
su

re
(%

)

Lambda

Fusing member on User-Item Matrix

membership fusion

Figure 4: F-measure changes as lambda change in
membership fusion

Next, we fused membership with rating matrix and also
used the parameter λ to adjust the weight of rating matrix
and membership in the similarity calculation.

From the figure 4, it can be seen that when λ = 0.8, we
can get best results overall. The third rows of Tables 1 to
3, represented by WSmem+UI , respectively show precision,
recall and F-measure values when λ = 0.8. It shows that
the results slightly improve on the baseline, but are a little
weaker than the fusion of friendship on the rating matrix.

We further fused two relationships together on the rat-
ing matrix and adopted two parameters: λ and β to adjust
the weights for the three data sources as shown in Formula
4. Experimental results indicate that the hybrid fusion per-
forms best when lambda = 0.8 and beta = 0.5 (which means
rating matrix contributes 80%, friendship and membership
respectively contributes 10% and 20% in the user-user sim-
ilarity calculation). These results are illustrated in the last
rows of Tables 1 to 3. To our surprise, compared to fusion of
friendship and membership separately, it did not have dis-

-54-

-2

 0

 2

 4

 6

 8

 10

 12

1 2 5 10 20

Pe
rc

en
ta

ge
 o

f
F-

m
ea

su
re

 im
pr

ov
em

en
t

Size of Top-N recommendations

Weighted-Similarity Fusion: Rating + Friendship
Weighted-Similarity Fusion: Rating + Membership

Weighted-Similarity Fusion: Rating+Friendship+Membership
Graph Fusion: Rating + Friendship + Membership

Figure 5: Improvements on F-Measure of All the
Fusion Approaches

tinct difference and was actually even a little weaker than
the pure fusing of friendship.

In order to identify whether the fusion via graph model
would perform better than via weighted similarity approach
given that social data are inherently in the graph structure,
we finally did the experiment of fusing the two social rela-
tionships on the graph and applied random walk algorithm
to calculate neighborhood similarity.

Based on the graph construction method described before,
we firstly run a series of simulations to learn the optimal ε.
After running 100 times, the optimal ε that we got is 0.05.
The comparative results under threshold 0.05 are then com-
puted and listed in Table 5. It shows that precision, recall
and F-measure scores are all highly improved compared to
the fusion via weighted-similarity approach. In particular,
when returning top 2 and top 5 recommendations, the im-
provements significantly reached 7.94% and 7.99% respec-
tively.

Table 4: Fusing friendship and membership via
Graph

Gfri+mem+UI Top 1 Top 2 Top 5 Top 10 Top 20

Precision 31.30 27.12 20.62 15.88 11.79

Recall 4.05 7.02 13.35 20.55 30.54

F-Measure 7.18 11.15 16.21 17.92 17.01

Figure 5 further shows that while returning Top-1 recom-
mendation, the fusion via graph can achieve an improvement
at 4.82%, and others are however all slightly weaker than
the baseline. When returning top N recommendations from
2 to 10, all of the fusion approaches enhance the baseline
CF method, which positively proves the usefulness of social
relationship data especially when multiple recommendations
are computed. It also indicates that the fusion via graph can
boost the baseline significantly by up to 8%, demonstrating
that the graph model is a more proper way to fuse explicit
social relationships.

5. CONCLUSION AND FUTURE WORK
In this paper, we presented two principal methods to inte-

grate explicit social relationships into traditional CF meth-
ods: the weighted-similarity fusion and the graph fusion. We
demonstrated the effectiveness of social relationships in aug-

Table 5: Table of improvements on F-Measure by
Comparing with the Baseline

Improvements Top 1 Top 2 Top 5 Top 10 Top 20

WSfri+UI -0.73 0.87 2.80 1.80 1.28

WSmem+UI -1.46 1.55 2.47 0.58 0.61

WSfri+mem+UI -1.75 1.36 2.53 0.70 0.80

Gfri+mem+UI 4.82 7.94 7.99 4.25 4.04

menting recommendations, and particularly that the graph-
based fusion is more effective in bringing into play of the
power of social data. To the best of our knowledge, the
work is one of the first attempts to explore the effect of
membership in addition to friendship, and to fuse both of
them based on random walk graph model with collaborative
filtering (CF) systems.

For the next step, we are interested in further exploring
the impact of social relationships on recommender systems
from three aspects: one is to explore other potential re-
lationships, such as the relation between items and asso-
ciated groups, other social relationships besides friendship
and membership, such as the reporting chain in a company,
to see how to model and utilize these data in order to make
better recommendations; another direction is to explore how
to enhance Random Walk model so as to handle heteroge-
neous data in a more fine-grained way, based on the method
proposed in [25]; finally, as the explosion of the size of social
websites, we need to pay more attention to the algorithm’s
scalability and efficiency, when the social graph grows with
millions of nodes.

6. ACKNOWLEDGMENTS
We thank Lawrence Bergman of IBM T.J. Watson Re-

search Center for his generous help and valuable comments
on this work.

7. REFERENCES
[1] C. Lam. Snack: incorporating social network

information in automated collaborative filtering. In
EC ’04: Proceedings of the 5th ACM conference on
Electronic commerce, pages 254–255, New York, NY,
USA, 2004. ACM.

[2] E. Spertus, M. Sahami, and O. Buyukkokten.
Evaluating similarity measures: a large-scale study in
the orkut social network. In KDD ’05: Proceedings of
the eleventh ACM SIGKDD international conference
on Knowledge discovery in data mining, pages
678–684, New York, NY, USA, 2005. ACM.

[3] S. Baluja, R. Seth, D. Sivakumar, Y. Jing, J. Yagnik,
S. Kumar, D. Ravichandran, and M. Aly. Video
suggestion and discovery for youtube: taking random
walks through the view graph. In J. Huai, R. Chen,
H.-W. Hon, Y. Liu, W.-Y. Ma, A. Tomkins, and
X. Zhang, editors, WWW, pages 895–904. ACM, 2008.

[4] D. Boyd. Friends, friendsters, and myspace top 8:
Writing community into being on social network sites.
http://www.firstmonday.org/issues/issue11 12/boyd/
index.html, December 2006.

[5] N. Baym. How Good A Friend Is A Last.fm Friend?
http://www.last.fm/user/popgurl/journal/2008/04/28/
3d9l how good a friend is a last.fm friend.

-55-

[6] M. Balabanović and Y. Shoham. Fab: content-based,
collaborative recommendation. Commun. ACM,
40(3):66–72, 1997.

[7] P. Melville, R. J. Mooney, and R. Nagarajan.
Content-boosted collaborative filtering for improved
recommendations. In Eighteenth national conference
on Artificial intelligence, pages 187–192, Menlo Park,
CA, USA, 2002. American Association for Artificial
Intelligence.

[8] M. J. Pazzani. A framework for collaborative,
content-based and demographic filtering. Artif. Intell.
Rev., 13(5-6):393–408, 1999.

[9] J. S. Breese, D. Heckerman, and C. M. Kadie.
Empirical analysis of predictive algorithms for
collaborative filtering. In G. F. Cooper and S. Moral,
editors, Proceedings of the 14th Conference on
Uncertainty in Artificial Intelligence, pages 43–52,
1998.

[10] H. Ma, H. Yang, M. R. Lyu, and I. King. Sorec: social
recommendation using probabilistic matrix
factorization. In CIKM ’08: Proceeding of the 17th
ACM conference on Information and knowledge
management, pages 931–940, New York, NY, USA,
2008. ACM.

[11] J. Golbeck. Generating predictive movie
recommendations from trust in social networks. pages
93–104. 2006.

[12] P. G. Doyle and J. L. Snell. Random walks and
electric networks, 2000.

[13] F. Fouss, A. Pirotte, J.-M. Renders, and M. Saerens.
Random-walk computation of similarities between
nodes of a graph with application to collaborative
recommendation. Knowledge and Data Engineering,
IEEE Transactions on, 19(3):355–369, March 2007.

[14] M. Gori and A. Pucci. Itemrank: A random-walk
based scoring algorithm for recommender engines. In
M. M. Veloso, editor, IJCAI, pages 2766–2771, 2007.

[15] G. Groh and C. Ehmig. Recommendations in taste
related domains: collaborative filtering vs. social
filtering. In GROUP ’07: Proceedings of the 2007
international ACM conference on Supporting group
work, pages 127–136, New York, NY, USA, 2007.
ACM.

[16] R. Gross, A. Acquisti, and J. H. Heinz. Information
revelation and privacy in online social networks. In
WPES ’05: Proceedings of the 2005 ACM workshop on
Privacy in the electronic society, pages 71–80, New
York, NY, USA, 2005. ACM Press.

[17] U. von Luxburg. A tutorial on spectral clustering.
Statistics and Computing, 17(4):395–416, December
2007.

[18] Z. Huang. Graph-based analysis for e-commerce
recommendation. PhD thesis, Tucson, AZ, USA, 2005.
Adviser-Hsinchun Chen and Adviser-Daniel D. Zeng.

[19] H. G. Hummel, B. van den Berg, A. J. Berlanga,
H. Drachsler, J. Janssen, R. Nadolski, and R. Koper.
Combining social-based and information-based
approaches for personalised recommendation on
sequencing learning activities. International Journal of
Learning Technology, 3:152–168(17), 12 August 2007.

[20] J. G. Kemeny and J. L. Snell. Finite Markov Chains.
Springer-Verlag, 1976.

[21] I. Konstas, V. Stathopoulos, and J. M. Jose. On social
networks and collaborative recommendation. In SIGIR
’09: Proceedings of the 32nd international ACM
SIGIR conference on Research and development in
information retrieval, pages 195–202, New York, NY,
USA, 2009. ACM.

[22] I. Guy, I. Ronen, and E. Wilcox. Do you know?:
recommending people to invite into your social
network. In IUI ’09: Proceedings of the 13th
international conference on Intelligent user interfaces,
pages 77–86, New York, NY, USA, 2009. ACM.

[23] J. Chen, W. Geyer, C. Dugan, M. Muller, and I. Guy.
Make new friends, but keep the old: recommending
people on social networking sites. In CHI ’09:
Proceedings of the 27th international conference on
Human factors in computing systems, pages 201–210,
New York, NY, USA, 2009. ACM.

[24] J. Wang, A. P. de Vries, and M. J. T. Reinders. A
user-item relevance model for log-based collaborative
filtering. In M. Lalmas, A. MacFarlane, S. M. Rüger,
A. Tombros, T. Tsikrika, and A. Yavlinsky, editors,
ECIR, volume 3936 of Lecture Notes in Computer
Science, pages 37–48. Springer, 2006.

[25] J. Zhang, J. Tang, B. Liang, Z. Yang, S. Wang, J. Zuo,
and J. Li. Recommendation over a heterogeneous
social network. Web-Age Information Management,
International Conference on, 0:309–316, 2008.

-56-

Spreading Activation Approach to
Tag-aware Recommenders:

Modeling Similarity on Multidimensional Networks
Alexander Troussov

IBM, Ireland
IBM Software Lab, Bld. 6,

Mulhuddart, Dublin 15, Ireland
+353-1-815 1906

atrousso@ie.ibm.com

Denis Parra
University of Pittsburgh and

CNGL at Trinity College Dublin
135 North Bellefield Ave., Pittsburgh,

PA 15260, USA
+1 (412) 624 9403
dap89@pitt.edu

Peter Brusilovsky
University of Pittsburgh

135 North Bellefield Ave.,
Pittsburgh, PA 15260, USA

+1 (412) 624 9404

 peterb@mail.sis.pitt.edu

ABSTRACT

Social tagging systems present a new challenge to the researchers
working on recommender systems. The presence of tags, which
uncover the reasons of user interests to tagged items, opens a way
to increase the quality of recommendations. Yet, there is no
common agreement of how the power of tags can be harnessed for
recommendation. In this paper we argue for the use of spreading
activation approach for building tag-aware recommender systems
and suggest a specific version of this approach adapted to the
multidimensional nature of social tagging networks. We introduce
the asymmetric measure of relevancy (proximity) of two nodes on
a multidimensional network as a cumulative strength of
(weighted) multiple connections between two nodes, which
includes paths and graph-structures connecting the nodes. This
metric is also applicable to measure relevancy of two sub-graphs.
Spreading activation methods (SAM), which usually employ
breadth first search, are an efficient way to define and compute
such measure taking into account not only links constituent a path,
but the properties of nodes in the path such as node’s types and
outdegree.

We apply this notion of relevancy to measure similarity of
collaborative tagging systems users and present the results of
numerical simulation showing that spreading activation methods
allow us to discriminate between diverse graph-structures
connecting users via resources and tags. We show that the results
of simulation are stable w.r.t. the variation of parameters of
spreading activation algorithm used in our experiment.

Categories and Subject Descriptors
H.3.4 [Information Storage and Retrieval]: Systems and
Software – information networks; H.3.5 [Information Storage
and Retrieval]: Online Information Services – data sharing.

General Terms
Algorithms, Measurement, Performance, Experimentation.

Keywords
Tagging, relevancy propagation, spreading activation, graph-
based mining, structural cohesion, CiteULike.

1. INTRODUCTION
Social tagging systems introduced new challenges to the well-
established area of recommender systems. While the majority of
content based, collaborative, and hybrid recommender approaches

were created for a bi-modal world of items and users (connected
by rating incidents), social tagging systems present a more
complicated world of users, items, and tags (connected by tagging
incidents, also known as tagging instances). While some early
works attempted to treat the problem of recommendation in social
tagging systems in an “old way”, basically ignoring the tags, the
majority of researchers in this new area argued that tags are vital
for successful recommendation in this new domain and called for
tag-aware recommenders. They argued that on one hand, tags can
compensate the loss of ratings (which are not available in most
social tagging systems), while on the other hand, tags can make
recommendation more precise because they provide not only the
information of what items are of interest to a user, but also why
they are of interest [8,14,20,26].

Despite the common agreement that tags should be used as a
successful recommender component of a social tagging system,
there is no agreement on how it should be done. As a result, a
multitude of approaches emerged just over the last three years.
Roughly, these approaches can be classified as an extension of
either content-based or collaborative filtering approaches. The
former group emphasizes connections between items and tags
treating tags as an alternative (or additional) way to describe items
and establish a profile of user interests [9, 15]. The latter group
emphasizes connections between users and tags to establish a
better similarity between users in a social tagging system [25, 26].

We argue than inherently networked nature of social tagging
systems calls for some alternative recommender approaches,
which are not just simple extension of either content-based or
collaborative technologies. A successful recommender approach
for this new context should fully employ the complex network
structure of a typical social tagging system and use all kinds of
links: user-tag, item-tag, user-item. We think that the most
promising in this context is the spreading activation approach.
This approach has been originally developed in the field of
cognitive psychology [3] to model human brain and later explored
in the context of information retrieval [7].

The power of spreading activation approach was recognized in the
area of recommenders and other personalized systems as well;
however, so far these approaches form just a small minority. The
problem is that the traditional user-item universe does not provide
a sufficiently rich network for spreading activation technology.
Thus most of known recommenders based on spreading activation
were built for context where an additional network can be formed
such as a hypertext network for Web page recommendation [17]

-57-

or a network of entities and concepts in semantically enriched
recommenders [4, 12, 18].

We believe that social tagging systems will provide a new
promising context as well as new challenges for recommenders
based on spreading activation. What we consider as the main
challenge is the multidimensional nature of a typical social
tagging network. Almost all existing applications of spreading
activation for personalization and recommendation operated in
relatively homogeneous kinds of networks with 1-2 kinds of
nodes and one kind of links. In contrast, even a simplified social
tagging network, where each tagging event is represented by a
group of three links (user-tag, item-tag, and user-item) includes
three types of nodes and three types of asymmetric links. This
organization requires some more sophisticated spreading
activation approaches.

Our paper attempts to address this challenge by introducing the
asymmetric measure of relevancy (proximity) of two nodes on a
multidimensional network as a cumulative strength of (weighted)
multiple connections between two nodes which includes paths and
graph-structures connecting the nodes. This metric is also
applicable to measure relevancy of two sub-graphs. Spreading
activation methods, as breadth first search, is an efficient way to
define and compute such measure taking into account not only
links constituent a path, but the properties of nodes in the path
such as node’s types and outdegree.

We apply this notion of relevancy to build a tag-aware approach
to measure similarity between users in collaborative tagging
systems. The paper presents the results of a numerical simulation
showing that spreading activation algorithms allow discriminating
the degree of connectivity of users between certain graph-
structures connecting users via resources and tags. We
demonstrate that the results of the simulation are stable w.r.t. the
variation of parameters of the spreading activation algorithm used
in our experiment.

The rest of the paper is organized as follows. In section 2 we first
provide a short overview of related work focusing on the use of
spreading activation methods (SAM) to propagating and
redistributing relevancy. We also theorize about desired properties
of relevancy propagation on multidimensional network models of
Web. 2.0 data needed to create efficient and scalable
recommender systems.
In section 3 we render a formal model of folksonomies (tripartite
hypergraph) as a multidimensional network with four types of
nodes corresponding to users, resources, tags and instances of
tagging. In section 4 we present the results of numerical
simulation. Finally, section 5 describes the conclusions and future
work

2. RELATED WORK
2.1 Overview of Relevancy Propagation Using
Spreading Activation Methods
In neurophysiology interactions between neurons are modeled by
way of activation which propagates from one neuron to another
via connections called synapses to transmit information using
chemical signals. The first spreading activation models were used
in cognitive psychology to model these processes of memory
retrieval [5, 3]. This framework was later exploited in Artificial
Intelligence as a processing framework for semantic networks and
ontologies, and applied to Information Retrieval [2, 7, 19] as the

result of direct transfer of information retrieval ideas from
cognitive sciences to AI. In other domain, [27] created spreading
activation models for trust propagation on the Web.

In [21] and [23] authors work with the notion of the relevancy of
ontological concepts to a free text. They propagate relevancy of
the concepts explicitly mentioned in a document to other
ontological concepts using a spreading activation algorithm. Their
algorithm works in such a way, that after short number of iteration
the topical foci of a cohesive coherent text become the most
activated concepts (even if they were not explicitly mentioned in
the text).

In [22] authors summarize their experience in creating graph-
based related item recommender for activity centric environment
on a Nepomuk Social Semantic Desktop [24]: relevancy of a
“pile” of nodes representing resources and concepts is propagated
to other nodes. Authors in [22] conclude that as a graph-mining
technique, spreading activation combines fuzzy clustering and soft
inferencing, and therefore might be suitable for relevancy
propagation. Propagation should lead to discovery of new nodes
which have short length paths to many (if not all) nodes from the
initial set. In other words, newly discovered nodes should
minimize the “distance” to the initial set of nodes, i.e., nodes
which might be considered as potential centroids of strong
clusters induced by the initial conditions. Since partitioning of the
nodes according to these clusters is not needed, processing of
polycentric queries [22] for related item recommendation could be
done using soft clustering methods. On the other hand, relevancy
propagates through links. an alternative view on the related item
recommendation is that newly discovered nodes must be
connected to the initial conditions by particular types of directed
links. Therefore, propagation of relevancy might be interpreted as
fuzzy inference.

In [23], the authors go further in analyzing SAM as a very general
class of iterative algorithms for relevancy propagation, local
search, relationship/association search, and computing of dynamic
local ranking. Authors indicate that the same iterative algorithms
were used long before in numerical simulation in physics,
mechanics, chemistry, and engineering sciences. Hence, the
algorithm is quite polymorphic: “Using the same iterative
algorithm, with one set of parameters one can emulate heat
transfer; with another set of parameters the same algorithm will
show us the behavior of oscillating strings”.

2.2 Spreading Activation in Recommender
Systems
Spreading activation approach as a technology for
recommendation in various kinds of networks belongs to a
broader group, which is typically referred to as graph-based
approaches for recommendation. In addition to several recent
papers mentioned in the introduction, which explicitly use
spreading activation to build recommender systems, we can a few
other examples of using various graph-based approaches. In [1],
the authors presented a theoretic approach where users are
modeled as nodes in a directed graph and the directed links
represent how representative is a user of another user's behavior.
In [11], the authors use spreading activation to deal with the
sparsity problem in collaborative filtering. They try to tackle the
problem finding transitive relationships by comparing three
different methods on a bipartite graph which represented
consumer-product interactions. Other interesting approach was the

-58-

one presented in [10], where the authors propose a constrained
spreading activation algorithm having good results compared with
a traditional memory-based approach over a small subset of the
Movie Lens data set. These approaches show the potential of
spreading activation to be used on recommender systems, but they
don't take into account the nature of multidimensional networks,
such as folksonomies derived from collaborative tagging systems,
where different types of nodes, links and relationships can have a
strong influence in the design of the algorithms.

2.3 Propagating Relevancy on
Multidimensional Web 2.0 Networks
We focus on the applications of SAM to measure similarity
between the users of collaborative tagging systems modeled as
multidimensional networks. Indeed, we treat graph-based
“similarity” of users as a particular case of “relevancy” of nodes
on multidimensional networks. In this subsection we provide
consideration on which properties of a generic class of spreading
activation algorithms are suitable methods for modeling relevancy
propagation.

The general inspiration behind using graph-based methods to
model relevancy (energy, trust, risk, etc.) propagation on networks
is probably the same in many domains: the relevancy is treated as
a kind of energy which might be “injected” into some nodes, and
propagated through links to other nodes: “… the closer node x to
the injection source s, and the more paths leading from s to x, the
higher the amount of energy flowing into x in general” [27].
Therefore, spreading activation methods (SAM), which usually
employ breadth-first search), are an efficient way to propagate
relevancy. Since according [23] SAM is a broad class of
algorithms, the choice of algorithm’s parameters is crucial and can
be done taking into account the nature of the target application.

First of all, Web 2.0 data could be accurately modeled only by
multidimensional networks. For instance, formal model of a
folksonomy as tripartite hypergraph [13] converted to network
representation, has four types of nodes: users, resources, tags,
instances of tagging. The shortest possible path between two
folksonomy users has the length four (for instance, user1- instance
of tagging1- tag - instance of tagging2 - user2). As compared to
trust propagation in heterogeneous networks, the amount of
relevancy flowing from one node to another should depend not
only on types of links, but on properties on nodes in paths.
Connections via resources might be more important than
connections through tags. In our future work we are going to
exploit what [23] calls “the importance of nodes”, but one
property of nodes which should significantly affect the
propagation, can be immediately inferred from the local topology
of the network, namely from the number of outcoming links from
a node. Ambiguous and top popular tags might be linked to big
number of tag instances and big number of users. Intuitively,
connections via such tags should provide less (if any) contribution
to the similarity of users as compared to the connections through
less popular tags.

In [27], the authors assume that nodes with the higher shortest
path distance from the injection source should be accorded less
trust in general. This property of trust propagation is probably not
applicable to propagating relevancy to measure similarity of
folksonomies users. Moreover, we suggest that for many
applications on multidimensional networks the length of the
shortest path might have positive correlation with the relevancy,

but is probably much less important and is too coarse-grained
measurement compared to trust propagation.

A final observation on relevancy propagation on multidimensional
networks: we don’t assume that all (or many) aspects of such
propagation can be properly understood in terms of paths. We
assume that there might be structures (like network B on the Fig.
1), which might significantly affect the relevancy propagation.

3. THE ALGORITHM
The algorithm we used in our experiment in general follows [23]
and employs iterative steps where activation is propagated
between neighbor nodes. To facilitate comparison of activation
distributions on the same or different networks and to account for
dissipation of activation caused by list purging step in spreading
activation, we introduce the step of normalization (calibration).

A multidimensional network can be modeled as a directed graph,
which is a pair G = (V,E) where
V – is the set of vertices vi
E – is the set of arcs ej
init: E → V, is the mapping that provides initial nodes for arcs
term: E → V, is the mapping that provides terminal nodes for arcs
imp – is importance value of arcs and nodes.
w – “weights”

F(E) – is the “activation” real valued function

The algorithm has the following steps

Initialization
Sets the parameters of the algorithm, network, and initial
F(E) as a list of non-zero valued nodes V n

Iterations
a. List Expansion.

b. Recomputation: The value at each node in the list is
recomputed based on the values of the function on
nodes which have links to the given node and types
of connections.

c. List Purging: We exclude the nodes with the values
less than a threshold.

d. Conditions Check To Break Iterations.
Normalization
 Linear scaling up or down the numerical values of the

activation level of all nodes in the list of activated nodes to
satisfy some conditions of activation conservation

The list of nodes (value of the function after spread of
activation) ranked according F values.

Output

Recomputation step is as follows:

 We have the list of nodes Vn.

 Input/Output Through Links Computation.

-59-

– For each node v we compute the input signal to each arc
e, such that init(e)=v. This computation can be based on
the value F(v), the outdegree of a node etc. For instance,
if the node v has n outgoing arcs of the same type, each
arc e might get input signal:

I (e) = F(init(e)) ∙ (1 / outdegree(v) ^beta)

where beta might be equal to 1. It could be also less
than one, in which case the node v will propagate more
activation to its neighbors than it has. (This might be
fine for some applications).

– When the signal (“activation”) passes through a link e,
the activation usually experiences decay by a factor
w(e):

O (e) = I(e) ∙ w(e)

 Input/Output Of Node Activation

– Before the pulse, the node v has the activation level
F(v).

– Through incoming links v get more activation:

Input(v) = Σ O(e)

for all links e such that init(e) ∈Vn, term(e) = v.

– By dissipating the activation through outgoing
links, the node v might lose activation:

Output(v) = Σ I(e)

for all links e such that init(e) = v, term(e) ∈Vn

 Computation Of New Level Of Activation

Fnew(v) = F(v) + Input (v)

To apply spreading activation to measure “similarity” of two
nodes on a network, we put the initial activation 1.0 at the first
node, and measure the activation at the second node after certain
number of iterations.

4. EXPERIMENTS
To apply graph-based mining on web 2.0 data we model the data
by a multidimensional network (where nodes and links are typed,
and links are “weighted”).

In our experiments we use three networks representing
instantiations of collaborative tagging systems. Each of these
networks has two actors (A1 and A2), two resources (R1 and R2),
and four instances of tagging (I1, I2, I3 and I4). For instance, the
network A on the figure 1 has the instance of tagging I1 with
links to the actor A1, the resource R1, and the tag T; this sub-
network shows that the actor A1 used the tag T for the resource
R1. Correspondingly, the links from the instance l2 show that the
actor A1 used the tag T for the resource R2. The instances I3 and
I4 show tagging for the user A2. The network A represents the
situation where both actors used the same tag for both resources.

In the implementation of our algorithm, each of these networks is
modeled by a directed graph, where for each link we create two
reciprocal arcs. In each experiment we set initial activation at the
node corresponding to the actor A1 and after several iterations of
the algorithm we compute the “similarity” of actors A1 and A2
using the method described in 3.

In [23], the authors view SAM in terms of graph-mining
algorithms as a technique for soft clustering. The major
parameters of SAM affecting “the scale” of the phenomena to be
discovered are signal decay and number of iterations (larger
number of iterations and low decay are needed to discover
“bigger” clusters). Since Web 2.0 applications are at the focus of
this paper, we run the experiments varying these two parameters.
Our target was to find regions of the parameters which allow us
consistently to capture structures like that on the Fig.1.

In this paper, we use SAM as a link analysis algorithm for local
ranking, in the same way as PageRank algorithm is used for
global ranking [28]. The major difference between them is that
PageRank iteratively redistributes the relevancy measure which is
initially set to each node of the network, while we use SAM to
iteratively redistribute the relevancy measure (the activation) from
one (or more) nodes sometimes referred to as “seeds”.

Diameter of graphs B, and C is 6, with the number of iterations
less than 6 the activation from a node on a network will not
necessarily reach all the nodes. The limit distribution (distribution
of the activation after a number of iterations big enough),
produced by SAM, in general does not depend on the choice of
the initial seed. This behavior gives us the estimate that local
ranking, which is highly sensitive to sub-graphs with the diameter

Figure 1. Three networks modeling instantiations of
collaborative tagging systems.

-60-

6, could be achieved when the activation will be redistributed on
such sub-graphs several times which amounts roughly to 12-48
iterations.

Our underlying common-sense assumption is that connectivity of
A1 and A2 is bigger in the network A than in B and C; and that
the connectivity of A1 and A2 in the network B is bigger than in
the network C. In other words, if we denote the final activation of
the node v in the network configuration X as x(v), we would
expect that sensible local ranking results should satisfy inequality:

 (1)
The shortest path between the nodes A1 and A2 equals to 4 in the
network A, and to 6 in networks B and C. So the first part of the
inequality is easily achieved with any parameters of the algorithm
(provided that the number of iterations is not less than 3). To
investigate how the algorithm can discriminate between
configurations B and C we introduce the network discrimination
factor as

 (2)

We computed the NDF ranging the number of iterations from 1 to
50, and the decay factor from 0 to 1. Figure 2 shows the results,
where the X axis represents number of iterations, the Y axis the
decay factor, and the Z axis the network discrimination factor.

The results in figure 2 show that we maximize the NDF when
running our spreading activation algorithm with a decay factor
between 0.8 and 0.9, and 24 iterations. Additionally, the plot
shows stable results for our algorithm, which suggests that
selecting values in close ranges will not return unexpected or
random activation values.
We have shown that on small networks SAM might be used to
measure similarity between users. It is part of our future plans to
show that on big multidimensional networks representing Web 2.0
data activation initiated at one of the nodes could be kept flowing
within strong clusters induced by the initial set of activated nodes
(because of high degree of clustering); and therefore the results
could be generalized to real-world data.

5. CONCLUSIONS AND FUTURE WORK
Our paper argued for the use of spreading activation as a
recommendation mechanism in multidimensional networks
produced by collaborative tagging systems. We introduced the
new network-based asymmetric measure of relevancy of two
nodes on a multidimensional network and applied it to build a tag-
aware approach to measure similarity between users in
collaborative tagging systems. While it is just one of several
possible ways to use spreading activation in collaborative tagging
context, we consider it as the best way to start. As demonstrated
by the stream of recent works, calculating similarity between
users is a component of the recommendation process where the
use of tags can provide a most valuable impact [25, 26].

The results of our experiments show that our metrics can be used
to differentiate activation levels on different network
configurations and they also show a stable behavior when input
parameters are changed. These results lead us to pass to the next
step on our research on this bottom-up approach, which is to
prove that our results are repeatable in large scale networks. We
are currently running our experiments on real social network data
that we have collected from the social bookmarking service
CiteUlike.

In this paper we presented applications of spreading activation
methods to local ranking on small networks. We didn’t prove yet
that the same “good” properties hold true when the algorithm runs
on massive networks. However, multidimensional networks which
model web 2.0 data and processes usually exhibit small world
phenomena properties, which include small average distance and
clustering effect. According to [23] spreading activation might be
considered as a method for soft clustering. Intuitive justification
of the use of spreading activation for ranking is the same as for
the PageRank algorithm [28]: a node can have a high rank if there
are many nodes that point to it, or if there are some nodes that
point to it and have a high rank. On each iteration strongly
activated nodes continue to support the high level of activation of
nodes to which they have outcoming links, while nodes which
have little connection with strongly activated nodes eventually
lose their activation. Therefore, even if constrained spread of
activation from one node might in several iterations reach
significant portion of the network (small average distance), strong
level of activation will be supported mainly in strong clusters
induced by the node.

6. ACKNOWLEDGMENTS
This material is based upon work supported by the National
Science Foundation under Grant No. 0840597. We also want to
thank Dr. Vincent Wade from the CNGL of the Trinity College
Dublin for his support to work on this collaborative research.

Dr. Alexander Troussov's work was done in collaboration with
CNGL, which is funded under Science Foundation Ireland's CSET
programme: Grant# 07/CE2/I1142.

7. REFERENCES
[1] Aggarwal, C. C., Wolf, J. L., Wu, K., and Yu, P. S. 1999.

Horting hatches an egg: a new graph-theoretic approach to
collaborative filtering. In Proceedings of the Fifth ACM
SIGKDD international Conference on Knowledge Discovery
and Data Mining (San Diego, California, United States,
August 15 - 18, 1999). KDD '99. ACM, New York, NY, 201-
212. DOI= http://doi.acm.org/10.1145/312129.312230

Figure 2. Results of the NDF experiment. Axis X shows
iterations, axis Y decay values, and axis Z the NDF.

-61-

[2] Aleman-Meza, B., Halaschek, C., Arpinar, I., & Sheth, A.
(2003). Context-Aware Semantic Association Ranking.
Proceedings of SWDB'03, Berlin, Germany, 33-50.

[3] Anderson, J., 1983. A Spreading Activation Theory of
Memory. Journal of Verbal learning and Verbal Behavior
1983, (22), 261-295.

[4] Bier, E. A., S. K. Card, et al. 2008. Entity-Based
Collaboration Tools for Intelligence Analysis. IEEE
Symposium on Visual Analytics Science and Technology,
VAST 2008, Columbus, Ohio, IEEE.

[5] Collins, A.M. & Loftus, E.F. 1975. A spreading-activation
theory of semantic processing. Psychological Review. 1975
Nov Vol 82(6), 407-428.

[6] Contractor, N. 2007. From Disasters to WoW: Using a Multi-
theoretical, Multilevel Network Framework to Understand
and Enable Communities. Retrieved March 8, 2009, from
http://www.friemel.com/asna/keynotes.php

[7] Crestani, F. 1997. Application of Spreading Activation
Techniques in Information Retrieval. Artificial Intelligence
Review, 11(6), 453-482.

[8] Dattolo, A., F. Ferrara, et al. 2009. Supporting Personalized
User Concept Spaces and Recommendations for a
Publication Sharing System. 17th International Conference
on User Modeling, Adaptation, and Personalization (UMAP
2009), Trento, Italy, Springer.

[9] de Gemmis, M., P. Lops, et al. 2008. Integrating tags in a
semantic content-based recommender. the 2008 ACM
conference on Recommender systems, RecSys '08 Lausanne,
Switzerland, ACM.

[10] Griffith, J., O'riordan, C., and Sorensen, H. 2006. A
constrained spreading activation approach to collaborative
filtering. pp. 766-773.

[11] Huang, Z., Chen, H., and Zeng, D. 2004. Applying
associative retrieval techniques to alleviate the sparsity
problem in collaborative filtering. ACM Trans. Inf. Syst. 22,
1 (Jan. 2004), 116-142.

[12] Hussein, T. and J. Ziegler 2008. Adapting web sites by
spreading activation in ontologies. ReColl '08: Int. Workshop
on Recommendation and Collaboration (in conjunction with
IUI 2008).

[13] Mika, P 2007. Ontologies are us: A unified model of social
networks and semantics. J. Web Sem. 5(1): 5-1

[14] Nauerz, A., S. Pietschmann, et al. 2008. Using Collective
Intelligence for Adaptive Navigation in Web Portals. 3rd
International Workshop on Adaptation and Evolution in Web
Systems Engineering at 8th International Conference on Web
Engineering 2008, Yorktown Heights, New York, USA.

[15] Niwa, S., T. Doi, et al. 2006. Web Page Recommender
System based on Folksonomy Mining for ITNG'06
Submissions. Third International Conference on Information
Technology: New Generations, ITNG 2006.

[16] Rocha, C, Schwabe, D., & Poggi de Aragao, M. 2004. A
Hybrid Approach for Searching in the Semantic Web.

Proceedings of the 13th international conference on WWW,
May 17-20, 2004, New York, NY, USA, 374-383.

[17] Olston, C. and E. H. Chi 2003. "ScentTrails: Integrating
browsing and searching on the Web." ACM Transactions on
Computer-Human Interaction 10(3): 177-197.

[18] Sarini, M. and C. Strapparava 1998. Building a User Model
for a Museum Exploration and Information-Providing
Adaptive System. Second Adaptive Hypertext and
Hypermedia Workshop at the Ninth ACM International
Hypertext Conference Hypertext'98, Pittsburgh, PA.

[19] Schumacher, K., Sintek, M., Leo Sauermann 2008
Combining Fact and Document Retrieval with Spreading
Activation for Semantic Desktop Search. The Semantic Web:
Research and Applications, 5th European Semantic Web
Conference, ESWC 2008, Tenerife, Spain, June 1-5, 2008
LNCS, Springer Verlag, Volume 5021/2008, 569-583

[20] Shepitsen, A., J. Gemmell, et al. 2008. Personalized
recommendation in social tagging systems using hierarchical
clustering. the 2008 ACM conference on Recommender
systems, RecSys '08 Lausanne, Switzerland, ACM.

[21] Troussov, A., Judge, J., & Sogrin, M. 2007, December 13).
IBM LanguageWare Miner for Multidimensional Socio-
Semantic Networks. Retrieved March 8, 2009, from
http://www.alphaworks.ibm.com/tech/galaxy

[22] Troussov, A., Judge, J., Sogrin, M., Bogdan, C., Edlund, H.,
& Sundblad, Y. 2008b. Navigating Networked Data using
Polycentric Fuzzy Queries and the Pile UI Metaphor
Navigation. Proceedings of the International SoNet
Workshop, 5-12.

[23] Troussov, A., Levner, E., Bogdan, C., Judge, J., Botvich, D.
"Spread of Activation Methods", in Dynamic and Advanced
Data Mining for Progressing Technological Development, Y.
Xiang and S. Ali (eds) IGI (to appear 2009).

[24] Sauermann, L., Kiesel, M., Schumacher, K., & Bernardi, A.
2009. Semantic Desktop. Social Semantic Web 2009: 337-
362

[25] Tso-Sutter, K., L. Marinho, et al. 2008. Tag-aware
recommender systems by fusion of collaborative filtering
algorithms. the 2008 ACM symposium on Applied
computing, SAC '08, Fortaleza, Ceara, Brazil, ACM.

[26] Zhao, S., N. Du, et al. 2008). Improved recommendation
based on collaborative tagging behaviors. the 13th
international conference on Intelligent user interfaces, IUI
'08, Gran Canaria, Spain, ACM.

[27] Ziegler, C.-N. and G. Lausen, 2004. Spreading activation
models for trust propagation. IEEE International Conference
on e-Technology, e-Commerce, and e-Service, IEEE
Computer Society Press.

[28] Brin, S. and Page, L., 1998. The Anatomy of a Large-Scale
Hypertextual Web Search Engine. In: Seventh International
World-Wide Web Conference (WWW 1998), April 14-18,
1998, Brisbane, Australia.

-62-

The Copied Item Injection Attack
Nathan Oostendorp
School of Information
University of Michigan
Ann Arbor, MI 48104
oostendo@umich.edu

Rahul Sami
School of Information
University of Michigan
Ann Arbor, MI 48104

rsami@umich.edu

ABSTRACT
In many web communities, users are assigned a reputation based
on ratings on their past contributions, and this reputation in turn
influences the recommendation level of their future contributions.
In this type of system, there is potentially an incentive for authors
to copy highly-rated content in order to boost their reputation and
influence within the system. We describe this strategy as a
copied-item injection attack. We conduct an empirical study of
this attack on the online news discussion forum Slashdot. We find
evidence of its use and demonstrate its effectiveness in eliciting
high ratings. We explore variants of this attack in other domains
and discuss potential countermeasures..

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Information Filtering

General Terms
Reliability, Security.

Keywords
Manipulation, Recommender System, Online Discussion, User-
Contributed Content

1. INTRODUCTION
Numerous online communities offer the ability to post and view
user-contributed content, but participants can suffer from
information overload in high-traffic environments. Often, rating
and filtering systems are used to promote content that has been
created or rated highly by leading users in the community. With
these systems, an item’s initial prominence is often based on the
reputation of the content creator. This reputation is based (at least
in part) on feedback on items that user has created in the past, and
serves as a signal of quality as well as an incentive to improve
quality. For example, reviews by ‘Top Reviewers’ on ePinions
[5] and ‘Elite Members’ on Yelp [22] are prominently displayed,
and comments by Slashdot [21] members with higher ‘Karma’
start at a higher level than other comments.

For these systems, as with other recommender systems, there is
increasing concern about manipulation by users with a vested
interest in promoting or burying certain target items. There is a
growing literature on addressing the threat posed by attackers who
create multiple shill or sybil accounts, and then use them to rate
items in patterns (perhaps randomized) that will lead to
collaborative filtering algorithms boosting or burying the target
items. Defense techniques that have been developed include
detecting and removing anomalous user profiles [2, 17, 12, 20,13],
limiting the influence of user profiles until they have made
contributions [19], and providing monetary incentives for honest
rating [14, 1]. In this paper, we identify a new class of attacks that
user-contributed content recommenders may be vulnerable to: the
injection of duplicated or plagiarized items. We study the
prevalence and effectiveness of this attack using a corpus of over
20 million comments from the technology news website Slashdot,
and propose countermeasures against this attack.

Execution of a copied-item injection attack involves a two-step
process for the attacker: First, she must find old items (comments,
on Slashdot) that have been rated very highly by the community.
She can then duplicate the entire item, or a portion of the item,
and post this to the site as a new item (i.e., a new comment on a
different story), claiming to be the creator. Site moderators do not
always recognize this as a recycled item, and so rate it highly
based on the quality of the original item. In turn, this leads to the
reputation of the attacker being increased, as she is the purported
author of high-quality content. Subsequently, she can exploit this
higher reputation, and the improved visibility it brings, to attract
attention to subsequent original (and possibly inferior) items she
creates.

The first question raised by attacks of this form is: Are they
harmful to the site or the rest of the community? This is not
obvious, because in some contexts it may be a useful contribution
to redirect the community’s attention to valuable information that
was known in the past, but has been forgotten. For any given
domain, this will need to be weighed in comparison to the harm
caused by the attack. In section 5, we argue that, for the Slashdot
domain, the potential damage caused by this attack outweighs the
potential benefit.

Existing techniques to prevent or limit manipulation in
recommenders do not protect against copied-item injection
attacks. This attack does not require the attacker to change her
rating profile, so procedures that detect and filter anomalous
ratings would not work. The influence-limiting approach also is
not effective: Creating a good duplicate, or rating it highly, will be
counted as a contribution by the attacker, but in this context, the
attacker is merely reusing earlier information from raters on the
original item to infer that the copy will be well-liked, but is not

-63-

actually contributing new information. Existing mechanisms that
prescribe monetary incentives to rate honestly do not address this
problem, as the raters who rate the copies highly are being honest
about their perceptions of its quality. In section 6 we discuss some
techniques that could be used to combat copied-item injection
attacks.

The rest of this paper is structured as follows. In section 2, we
review the related literature. In section 3, we formalize our
definition of copied-item injection attacks. Section 4 describes our
empirical analysis of this attack on the Slashdot dataset, and our
measurements of the current prevalence and effectiveness of this
attack in the Slashdot domain; we discuss the consequences of
these results in Section 5. In section 6, we discuss
countermeasures against this threat. We conclude and identify
directions for future work in section 7.

2. RELATED WORK
Recently, there has been a rich literature centering on the
vulnerability of collaborative filtering recommender systems to
attack, as well as defenses against those attacks. This was initially
observed by Lam and Riedl [8] and O’Mahony et al. [16]. This
literature has focused on a particular class of threats: attackers can
create “shill” or “sybil” user profiles, and use these to promote or
bury items they have a vested interest in. A number of authors
have studied variants of this attack, as well as defenses against
them; we refer readers to recent surveys by Mobasher et al [15]
and Mehta and Nejdl [13]. Techniques to defend against this
attack include methods to detect and remove anomalous user
profiles [2,17, 12, 20, 13], limiting the influence of user profiles
until they have made contributions [19], and providing monetary
incentives for honest rating [14, 1]. The chief difference with our
current work is that we consider a different class of attack: we
study settings in which, in addition to potentially injecting shill
user profiles, the attacker can inject items with known quality
(derived by copying existing items).

There has also been prior research on the Slashdot moderation
system. Lampe and Resnick [11] analyze the performance of the
moderation system in identifying high-quality comments, and
show that it is largely effective. Lampe and Johnston [9] report
that new users of the site use the moderation feedback they
receive as a cue to learn the norms of the community. Lampe et al.
[10] propose to use a second level of collaborative filtering to
adapt users’ interface views of the moderated comments. Poor
[18] argues that Slashdot is an archetypical public sphere on the
Internet, and describes the role of the Slashdot moderation system
in fulfilling this function.

David and Pinch [3] conducted a qualitative study of strategic
reviewing on Amazon.com. They document several cases of
plagiarized reviews; one of the motives they identify for
plagiarizing is to build up a long profile of ratings with low effort.
This is similar to the modus operandi of our copied-item injection
attack, except that the community’s ratings on the content are
more important than the raw number of comments in our setting.

3. MODEL AND TERMINOLOGY
In this section, we introduce terminology to clarify our discussion
of the copied-item injection attack.

There is a set U of users; we use h to denote an honest
contributor, and a to denote the attacker. A set of items I; each

item i ∈ I has two characteristic features: creator(i) denotes the
user who is listed as the creator of the item, and content(i) is a
description of its content (text, image features, etc.). The attacker
has some target content T that she would like to promote. At any
point in time, an item has a recommendation level rec(i). For
simplicity, we assume that the recommendation level is not
personalized; for personalized recommenders, rec(i) could denote
the average recommendation level among the target community,
or another summary statistic.

Each user u has a reputation R(u). Item recommendation level
rec(i) is assumed to depend on its creator’s current reputation
R(creator(i)) as well as the corpus of ratings on the item set I. The
user reputation R(u) is assumed to be computed based on the
corpus of ratings; we assume that, other things being equal, R(u)
is higher if a particular item i with creator(i)=u has higher
recommendation level rec(i). We assume that two items i,j with
content(i)=content(j) have positively correlated recommendation
levels, because the raters cannot consistently identify the later
item as having duplicated content. This is realistic in a system
with a large number of items and users.

A copied-item injection attack involves the attacker copying
a genuine item i, with a high rec(i), to create a new item c, with
content(c)=content(i), but creator(c)=a while creator(i)=h. The
attacker then waits for c to collect a sufficient number of ratings,
so that rec(c) increases towards the high level of rec(i). Finally,
attacker a creates a new item t with creator(t)=a and content(t)=T.

The simplest measure of the success of an attack is the
difference between rec(t) after this attack then it would have been
if item c was not created. A slightly more nuanced measure,
which is natural is the context of analyzing a’s incentives, is the
increase in a’s net benefit, accounting for the cost of creating the
copy c and the opportunity cost of not creating an original posting
instead. We explore this idea further in section 6.

4. ANALYSIS OF SLASHDOT
Slashdot is a high traffic online news site and an active forum that
receives several thousand user-contributed comments and over a
million pageviews every day [20]. To help the users navigate
among the large amount of user-contributed material, it uses a
rating/moderation system that lets them filter comments based on
a score from -1 to 5. This system has elaborate controls to detect
and discourage abuse, including rules on who can moderate, how
often they can moderate, and how much they influence the
score[11].

4.1 Slashdot’s Moderation System
The system revolves around two scores assigned to user accounts:
karma, which is accrued by contributing comments and receiving
positive moderations on those comments, and mod points, which
allows users to rate other users comments up or down. In this
system, the users and items are linked by authorship, so that each
item's rating is aggregated into karma for the user. A user’s
karma then determines both the probability of acquiring mod
points and the starting score for their posted comments. Because
positive ratings on an authors comments gives the author
additional influence within the system, there is clear incentive to
manipulate the system if a users goal is to gain influence or
prominence in these discussions.

-64-

Additionally, users can meta-moderate and judge whether a users
mod points have been spent appropriately. In this process, users
can view comment moderation pairs and give a up/down feedback
on if each moderation was appropriate. Users who frequently are
evaluated as having rated inappropriately become less likely to
receive mod points. This was designed to defend against simple
manipulations where mod points were traded or spent on inferior
comments for the express purpose of improving another users
karma.

While this system has some algorithmic checks for basic profile-
injection strategies such as detection of high-traffic cyclical
moderation patterns between users, there are some manipulation
strategies that can be used to gain undue influence within the
system. The online comic WellingtonGrey has humorously
documented a few of these in flowchart form [6]. This chart
identifies tactics for accruing karma including profile-injection ("a
second account with mod points"), strategically expressing
popular sentiments in comment text ("Is it about Microsoft? Say
they suck. Is it about Apple? Say they rule."). It also advises
recycling of old material. ("Do you have any old +5 posts on this
topic? Quick, post one!") This third tactic describes copying an
item to gain positive ratings, and therefore karma.

The Slashdot environment is likely to be an ideal environment for
this type of attack, due to several factors. Its longevity as a news
source (it celebrated its 10th Anniversary in 2008), and high
volume of traffic gives it a large library of existing comments that
could be recycled. Since so many comments are posted every
day, it is also reasonable to assume readers will be unable to
recognize an older comment out of the millions authored on the
site. Additionally, the nature of "news cycles" means that certain
topics recur frequently: a subject line search shows that Slashdot
has over 200 stories on Windows Vista, which has been in the
news for 2-3 years.

Based on these factors we can make a few generalizations about
where a copied-item attack might be used. Certainly it must have
an environment where the cost of item creation is low and also the
cost of copying an item is similarly low. The incentive to use the
attack must come from when the author receives some indirect
benefit from positive ratings on the items they create. The Copied
Item attack will also be easier where there are extremely large
numbers of items so that the probability of duplication detection
by recognition from readers is low. Finally, it will be easier to
deploy the attack when items have simple data structures, such as
a comment with a block of text, a subject line, and an authorship
reference, as opposed to items that might be indexed on many
different attributes and therefore may have too many similar
attributes to the original.

4.2 Description of Slashdot Data
We used a snapshot of Slashdot’s database from January 28, 2009,
which contained 20,830,313 comments contributed by 307,158
users across 158,867 news story discussions. Each comment
record contained a short subject line, a longer message body, a
timestamp of publication, the final rating for the comment, and
numerical ids referencing for the story and author.
The rating distribution for comments, shown in Figure 1, is
roughly a right-skewed normal distribution centered on the mean

of 1.158 with a standard deviation of 1.149. 1.30 million
comments have a rating of 4 or 5, or about 6.2% of the entire
population.

Figure 1: Score Distribution for All Comments on Slashdot
The comment text length distribution is shown in Figure 2 and
follows a lognormal distribution. After a logarithmic
transformation, the mean comment length is 5.68 (293 characters)
with a standard deviation of 1.11. The entire body of text from all
of these comments is roughly 11.0 billion characters.

Figure 2: Histogram of Log-Transformed Comment Lengths

-65-

4.3 Detection of Copied Items
In this study, our goal was to detect plagiarized comments in this
large Slashdot comment corpus. The core of this process was
finding comments that shared large substrings. However, there
are several conflating factors which could legitimately lead non-
attackers to reuse large substrings within their comments: users
quote from earlier comments or quote the same source; there is a
form of political activism that involves posting the same text
repeatedly such as the DeCSS decryption codes; and some users
attempt to disrupt a forum by posting as many junk comments as
possible. We processed the comments conservatively, so that we
would identify a comment as plagiarized only if none of the
conflating factors is a plausible explanation for the duplicated
text.

In order to detect plagiarisms our first step was to detect
comments that had significant duplicate text. We implemented a
Rabin-Karp search [7] with a window of 255 characters. Using
this method we converted each 255-character substring of a
comment message body into a hash value, and searched for co-
occurrences of hash values across multiple comments. The entire
corpus generated about 6.4 billion (hash,comment_id) pairs. Any
comment found to have more than 3 hash collisions with any
single previously posted comment was logged. We then went
through the logged comment pairs and confirmed that there was
significant duplicated text using a longest common substring
algorithm. This process resulted in 196,349 pairs of potentially
plagiarized comments among the 20-million comment corpus.

In order to narrow this set of comment pairs to distinguish
comments that may have been directly plagiarized with intent to
boost ratings, we applied a sequence of filtering steps to the
original set of copied items. These included:

1. We removed any pairs where the original comment had a
final rating score of 3 or less. This was eliminate comment
copies that had little reason to expect a high rating.

2. We removed any pairs where the longest common substring
was less than 90% of the copied comment length. This was
to avoid comments that had significant original material as
well as copied content.

3. We eliminated comment pairs where the copied comment
did not begin with the longest common substring. This rule
was used to weed out quotations since attributions or
quotation marks would typically prefix a quote.

4. We removed any comment pairs that appeared in the same
story. This was to avoid implicit quoting within replies.

5. We eliminated comment pairs where the copied comment
was posted anonymously, rather than by a logged in user, as
anonymous users see no direct benefit from having their
post rated highly.

6. We eliminated comment pairs where the original comment
was copied more than once; this was used to control for
overt reposting, DeCSS code posts, or other forms of
habitual reposting.

With these conservative restrictions in place, the set of probable
plagiarisms was 735 comment pairs, where 423 users had posted
the copied comments. We visually inspected about two dozen
pairs manually to confirm that there was no other apparent reason
for duplication.

4.4 Hypotheses and Results
Intuitively, we expect that copies of highly-rated comments will
also garner high ratings and be useful to potential attackers for the
purpose of acquiring karma. In this section we formulate three
hypotheses that test this conjecture.

Hypothesis 1: Copying a comment with a high rating is profitable
for attackers, in that it produces a comment which is more likely
on average to be highly rated.
If the copying of comments were profitable for an attacker, we
would expect the copies of these high scoring comments to garner
higher ratings than the population at large. We found in the target
population of likely plagiarized comments the rating distribution
of the copied comments was substantially changed versus the
distribution of the global population, as illustrated in Figure 3.
Indeed population of copied comments had a mean of 2.15 vs the
global mean of 1.16, nearly a full standard deviation higher than
the global mean, a difference of 0.987 points. Additionally, 30.4%
of items in the copied set had a rating of 4 or 5 as opposed to
6.2% of the global comment population. A two-sample t-test
confirmed significance of both results (p < 0.001). This
discrepancy confirms Hypothesis 1.

Figure 3: Distribution of Scores for Copied Comments

Hypothesis 2: Copying a comment with a high rating is more
profitable than contribution of other content by the attacker.
To see if this strategy is incentive compatible for the attacker, we
looked at our set of copied comments compared with the mean
rating for the copied item authors other items. By comparing each
of the copied comments scores with the users mean post rating in
a pair-wise t-test, we found the copied item had a mean
improvement of 0.730 points (p < 0.001). This confirms
Hypothesis 2.
Hypotheses 1 and 2 confirm that copies of highly-rated comments
tend to be rated highly even when taken out of their original
context. It is conceivable that these comments add value to the

-66-

readers of multiple topics, and that little damage is done by
rewarding the copiers for reposting them. We will discuss the
harm caused by the copied-item attack in more detail in section
5.1. Here, we provide evidence that the copies damage the
signaling quality of the Slashdot rating system:

Hypothesis 3: The average rating of comments, other than the
copied comment, by the copier is lower than the average rating of
other comments by the original poster.
In order to test this hypothesis, we first excluded all instances in
which the original comment was posted by an anonymous user. (If
the original comment was posted by an anonymous user, we could
not identify other comments posted by the same user; further, it is
clear to the readers that a comment is anonymous, and hence it is
unlikely that they would improve their expectation of other
anonymous comments). For each of the 683 surviving instances,
we measured the average rating of all comments (other than the
copied comment) posted by the original poster, and the average
rating of all comments (other than the copied comment) posted by
the copier. We find that the average rating for the original poster
is 1.70, vs 1.38 for the copiers; a two-sample t-test confirms
significance (p <0.001). This suggests that the copiers actually
had lower quality than the original posters, and thus, the high
rating they receive for the copied content reduces the ability of
readers to distinguish them from the higher-quality posters who
posted the original comments.

Hypothesis 4: Copied comments are much more likely to be topic
starters (comments starting a discussion thread) than other
comments, since it would be more difficult to have a copied
response seem appropriate as a reply to multiple comments.
We looked at the location of our copied comment population in
Slashdot discussions and found that of the 734 copied comments
573 were topic starters. If you contrast this with the entire
comment population of 20.8 million, 6.28 million comments
started topics. A two-sample t-test indicates that the copied
comments are 47.8% (78.0% vs 30.2%) more likely to be topic
starting than a comment in general (p < 0.001). Hypothesis 3 is
therefore confirmed. The consequence of this hypothesis is that
copying can distort the pattern of interaction on the site, skewing
it towards breadth rather than depth of exchange.

5. DISCUSSION
With H1, H2, and H3 confirmed, it seems evident that item
copying has been successfully used on Slashdot to systematically
garner high ratings for comments and therefore improve the users
karma score. We expect that this type of item injection attack has
potential to be a widespread problem both in the realm of Slashdot
and other moderation-based comment systems as well as other
collaborative filtering spaces. In any forum where inserting
copies of highly rated content is incentive compatible and
technically possible there is a strong likelihood of abuse. At the
core of this incentive problem on Slashdot is the transitive
property of item scores to users, where a user stands to directly
gain influence in the system by receiving positive feedback on
their items. However, systems containing low-cost item creation
may present different incentives for this type of attack, and it may
create variations in overall impact.

Simple manipulations to try and disrupt this type of behavior may
add only marginal costs to the effort required to copy comments.
On March 20, 2001 Slashdot deployed a code update that
attempted to curtail comment “re-posting” by logging an MD5

hash encoding of the entire comment text. Subsequent comments
that were posted with the same MD5 sum as a previous comment
were rejected from the discussion. We looked at our copied
comments sample set and found 28 comments posted before this
feature was deployed, 26 of which were exact copies. After this
change it was not possible to post the identical comment again;
however, it was possible to make a trivial change to a comment,
such as addition of whitespace, and repost. Of the 707 copies
detected dated after the March 20, 2001, 618 were identical to the
original except for the insertion or deletion of punctuation and/or
whitespace. After controlling for whitespace and non-
alphanumeric characters we found no significant difference
between entire/partial match ratio between the two populations
using a binomial test.
We suspect that this may possibly be due to the extreme ease with
which a duplicated post could be altered by adding even a single
whitespace character anywhere in the text. It also may be that our
conservative heuristics used to detect likely plagiarisms select
primarily towards exact matches in this data set.

5.1 Is Slashdot comment copying really
harmful behavior?
From a certain perspective, it may be reasonable to point out that
the copied comments on Slashdot do add value to the system. In a
sense, the positive ratings that the duplicated comments receive
are signals from the raters that the comment has value, and this
may add insights that otherwise wouldn’t be seen in this
discussion environment. While it may take a certain moral
flexibility to ignore the taboo of plagiarism, the copied item
posters could be thought of as agents of conversational arbitrage,
seeking out and shining up old gems from previous discussions.
However, simply looking at the reposted comments as harmless
injections ignores other externalities of having unattributed
reposting in a discussion system. Although the user ratings reflect
the immediate visceral reaction of the raters to the content, this
may not capture the entire value of a piece of content to the
system.

For the Slashdot domain, we believe that the potential damage
outweighs the potential benefit: Users can always jog the
community’s memory by quoting earlier comments with
attribution instead of resorting to plagiarizing comments, and
quoting is fairly widespread, so there is little additional benefit
accrued through these attacks. In fact, given the availability of
quoting as an alternative which meets community norms and
requires negligible additional effort by the copier, the fact that a
user would choose to not credit the original author is illuminating:
it indicates that they expect to gain a better reception (and better
ratings) by suppressing the fact that the content was duplicated.
This in itself suggests that the ratings are not perfectly aligned
with the community’s perception of the long-term value of a
contribution.

It is likely any systemic method to gain karma would have an
undesirable effect on the Slashdot system, and become
increasingly widespread if the technique was communicated
between users. One problem is this tactic distorts karma as a
signal of someone who has contributed good fresh content. For
instance, in the Slashdot system, karma has a direct impact on the
starting score of a users post. Therefore a user with high karma
user may start their post at 2, rather than 0 or 1. This means that

-67-

the comment ratings lose their effectiveness as a signal of quality
as well in this particular situation. This loss of signaling quality
was borne out in our confirmation of hypothesis 3.

The other potential impact if this tactic of copying comments was
widespread is that it would have a negative impact on the dynamic
actual conversations that occur within Slashdot. Hypothesis 4
confirms that these comments tend to be discussion-topic starters,
but any replies to these copied comments would be very likely to
be disregarded by the attacker. They are, after all talking to a
different person than the user who originally generated the
comment text. This means in as copied comments became more
frequent within the system, the harder it would be for users to find
genuinely interactive experiences.

Ultimately, we believe the threat is significant enough that
defenses against it merit careful consideration. This phenomenon
potentially weakens both incentive and signaling function of the
site’s reputation system: Users may be incentivized to copy items
as a lower-cost way of building reputation than creating original
content, even though the latter is a more valuable contribution;
and, future original contributions by the attacker may start as a
misleadingly high recommendation level, because they reflect the
quality of the author of the original item, rather than the attacker’s
inherent quality. Additionally, it may create an incentive for
copying content without attributing the original author, which can
disrupt the norms of the online community.

5.2 Variants in other domains
It is possible that a copied item injection attack could potentially
appear in other types of recommender spaces where items can be
inserted into the system with relatively minor barriers, just as
profile injection attacks are potentially problematic in spaces
where a user creation in a system is extremely low-cost. In
particular, any systems where ratings on items transitively score
the users who create the items will provide incentive for this type
of attack.

Although the Slashdot recommender system uses a simple voting
method of collaborative filtering, it is sophisticated in tracking
reputations for users and using these reputations to allocate
visibility and influence. Reputation tracking is a powerful method
of identifying high-quality contributors over time, so we expect
that many recommenders for social web applications will adopt
some it in some form. Then, copied-item injection attacks,
perhaps in conjunction with other attacks, will become a potential
threat.

In particular, it is the combination of an item and profile attack
that could be extremely problematic. A sophisticated attacker
could use the copied items to establish validity for shill items
posted by shill accounts, and likewise rate other comments
similarly with shill accounts. This would potentially create a
system where scores could be quickly increased on both shill
users and items.

In a movie recommender system (or other traditional item
recommenders) a combination of an item and user injection could
potentially distort recommender predictions if site maintainers
were not vigilant about repairing duplication. A copied item,
whether legitimately cataloged as a variant of an original film (ie
a “directors cut”) or sorted under a different name, could be used
as a target item in a manipulative attack in order to “push” or
“nuke” according to an agents agenda.

Another application in which copying items can increase the
power of an attacker is in search engine website rankings. Here,
the `ratings’ are expressed in the form of other sites linking to a
particular site. By copying some content from a high-quality site,
an unscrupulous site operator can increase the chances of other
genuine sites linking to his site. This will drive up the ranking of
his site on search engine results pages; some of these pages can be
used to damage readers through unrelated advertisements or
fraudulent content.

There are several other domains that could potentially see item-
injection attacks. In the news website space, gaming a
collaboratively filtered news aggregator such as Digg [3] could be
profitable by increasing traffic and therefore ad revenue.

6. POTENTIAL COUNTERMEASURES
In this section, we describe a framework for reasoning about
countermeasures to the copied-item injection attack, and identify
several possible techniques that could effectively combat this
threat. There are two core factors behind the copied-item attack:
(1) Users have an incentive to increase their reputation, and incur
effort costs when they attempt to do so, either by copying items or
by creating fresh contributions. (2) Copied items are likely to
garner ratings that are similar to those of the original item. We
frame our discussion of countermeasures with these two aspects
of the problem in mind.

For a given domain, it is helpful to visualize a space A of
possible pieces of content, coupled with a distance metric that
captures the similarity between two pieces of content: The smaller
the distance between x and y, the more similar the pieces of
content. For example, A could be the space of all text strings, and
the distance measure could be based on edit distance, or keyword
frequencies. For a movie domain, A could be defined by a set of
features (title, actors, director, etc.), with a distance metric based
on this feature similarity. Modeling the content space in this way
allows us to reason about near-copies as well as exact copies. The
cost and benefit to an attacker a in executing an item-copy
injection attack can then be described in terms of this reference
model. When a copies an item i to generate a near-copy item c,
her cost is presumably increasing in the distance between
content(i) and content(c), reflecting the effort of obfuscating the
fact that the item was copied; for example, it takes some effort to
reword a comment or change the whitespace and punctuation. The
benefit accruing to the attacker depends on the ratings that c
garners; given that i was a very highly-rated item, the benefit
might be highest for an exact copy but drop off as the distance
between content(i) and content(c) increases.

Techniques to combat item-copy injection attacks can work
by raising the cost of carrying out the attack, imposing a penalty if
the attack is detected, or reducing the benefit of creating the copy
item c.

• One natural technique is to detect copies, and either
prohibit them outright, or impose a reputation penalty
when they are injected. This is the approach that Slashdot
implemented when they prohibited exact copies of
comments. In practice, however, this imposes an
insignificant cost on attackers, as they only have to make
trivial changes to a previous comment. Instead of merely
identifying exact copies, a slightly more sophisticated
approach might detect an item within a certain distance of

-68-

a pre-existing piece of content, using a distance metric
appropriate for the domain. This has a two-fold
advantage: it forces attackers to put in more effort in
modifying the original content, and in doing so, the copy
is less similar to the original item, leading to a lower
expected benefit. Another variation would be to not
prohibit near copies, but rather, to merge similar items
into a single logical ‘item-cluster’.

There are two drawbacks to this approach, however. First,
it is only as good as the distance metric used. This might
spark an arms race between attackers and site managers,
in which attackers continually find clever ways to retain
the quality of the original item while appearing to be
distant under the current metric, and site managers
continuously update the metrics to plug these gaps.
Second, as the distance threshold increases, there is a
growing threat of false positives: genuine items that get
mistaken for copies. This could hamper the contribution
of honest users.

• Alternatively, the defense can focus on reducing the
benefit to users of copying items, relative to more socially
valuable activities such as the creation of original content.
The attacker derives benefit because of the increase in her
reputation and the privileges that accompany a better
reputation. This suggests that a more sophisticated
reputation update may be effective: When a user a creates
an item i, rather than increase her reputation based merely
on the average rating of i, we should account for the
average rating of similar items as well. For example, the
creator’s contribution might be calculated as the
difference between the average rating of item i and the
average rating of the nearest (in terms of content distance)
pre-existing item j; or, perhaps, use a similarity-weighted
average of all pre-existing items. This reduces the benefit
of copying high-quality items, hopefully to the point that
users choose more valuable ways of building their
reputation. Genuine posting of similar items would still
be possible, but there would be a reduced incentive to do
so.

The same approach can be extended to tailor the
incentives of raters as well as creators. The Influence
Limiter [18] scores raters based on the amount they
improve predictions for future raters. Loosely, a rater who
is the first to rate a high-quality item high will gain the
highest score, while subsequent raters will be measured as
having diminishing contributions. A rater’s accumulated
score is then used to limit their influence on others’
predictions. In the case of a profile injection attack, the
effectiveness of each shill is stunted – as it adds no
information, it will not earn a high reputation score, and
hence have limited influence. As described in [18], the
Influence Limiter might be susceptible to copied-item
injection attacks: The attacker expects the copy c to have
similar ratings to the original i, and thus, attacker shills
can be the first to put in high ratings where relevant. This
can be countered by scoring the early raters on items
relative to a benchmark prediction that is the average of
pre-existing items with similar content.

• A third technique might be to rely on targeted moderation
that flags items as ‘legitimate’ or ‘plagiarized’. Human

moderators could be shown nearest content items, and
might be more skilled at distinguishing genuine forms of
copying from reputation-boosting plagiarism. The
tradeoff, of course, is that this requires additional human
effort that might be better spent in creating or rating
items. In addition, as with rating systems, there would
need to be a system to prevent attacker shills from
controlling this moderation process, perhaps necessitating
a level of “meta-moderation” as well.

One constraint on all of these techniques is that calculating
distances between pieces of content in a large database can be
very computationally intensive. This might preclude the use of
these techniques in a online mode. Instead, the automated
techniques could be used offline to periodically filter items or
adjust reputations. Human moderators trying to locate similar
pieces of content online would have to rely on simple distance
metrics.

It is not possible to meaningfully evaluate the performance of
these techniques on our existing dataset, as the attackers are likely
to adapt the detailed form of attack once a specific
countermeasure has been deployed. This is borne out by the way
in which users sidestepped Slashdot’s check for identical
comments, as described in section 5. The evaluation of the relative
effectiveness of these countermeasures is therefore left as a
subject for future work.

7. FUTURE WORK
In this paper, we have identified a class of attacks, copied-item
injection attacks, that user-generated content recommenders on
the web may be vulnerable to. We have studied this attack in a
single domain, but the attack pattern is relevant to many different
settings; likewise, countermeasures developed in one setting will
be helpful in others as well. There are several important directions
for future work. The development and implementation of practical
countermeasures should be a priority for applications where the
copied item injection attack is a feasible strategy. For some
domains where duplicate detection of content is impractical, one
direction of research may be to use patterns of user ratings to
identify similarity between items.
Additionally, it would be useful to conduct empirical or
experimental measurement of the prevalence of this attack in
other domains. This would give confirmation as well as a broader
understanding of attack patterns and the motivations of attackers.

 Once countermeasures have been implemented and deployed, and
users have had a chance to adapt to them, it will be important to
experimentally determine their effectiveness by comparing the
frequency and impact of attacks with and without defenses.

8. ACKNOWLEDGMENTS
This work was supported by the National Science Foundation
under award IIS-0812042. We would also like to thank the
Slashdot Engineering team at SourceForge Inc, specifically Rob
Malda, Jamie McCarthy, and Uriah Welcome for their help in
accessing and interpreting Slashdot comment data. We are also
grateful to Paul Resnick at the University of Michigan for his
helpful feedback and suggestions on this project.

-69-

9. REFERENCES
[1] R. Bhattacharjee and A. Goel. Algorithms and incentives for

robust ranking. In Proceedings of the ACM-SIAM
Symposium on Discrete Algorithms (SODA ’07), 2007.

[2] P.-A. Chirita, W. Nejdl, and C. Zamfir. Preventing shilling
attacks in online recommender systems. In WIDM 05, pages
67–74, 2005.

[3] S. David and T. Pinch. Six degrees of reputation: The use
and abuse of online review and recommendation systems.
First Monday, 6, 2006.

[4] Digg, 2009. http://www.digg.com.
[5] Epinions, 2009. http://www.epinions.com.

[6] W. Grey. The slashdot flowchart, 2007.
http://miscellanea.wellingtongrey.net/2007/04/28/slashdotflo
wchart/

[7] R. M. Karp and M. Rabin. Efficient randomized pattern-
matching algorithms. IBM J. Res. Dev., 31(2):249–260,
1987.

[8] S. K. Lam and J. Riedl. Shilling recommender systems for
fun and profit. In Proceedings of WWW ’04., pages 393–
402, 2004.

[9] C. Lampe and E. Johnston. Follow the (slash) dot: effects of
feedback on new members in an online community. In
Proceedings of the 2005 international ACM SIGGROUP
conference on supporting group work, 2005.

[10] C. Lampe, E. Johnston, and P. Resnick. Follow the reader:
Filtering comments on slashdot. In Proceedings of CHI 07
Conference on Human Factors in Computing Systems, pages
1253–1262, 2007.

[11] C. Lampe and P. Resnick. Slash(dot) and burn: Distributed
moderation in a large online conversation space. In
Proceedings of ACM CHI 2004 Conference on Human
Factors in Computing Systems, 2004.

[12] B. Mehta, T. Hoffman, and P. Fankhauser. Lies and
propaganda:detecting spam users in collaborative filtering. In
Proceedings of IUI’07, 2007.

[13] B. Mehta and W. Nejdl. Attack resistant collaborative
filtering. In Proceedings of ACM SIGIR ‘08, 2008.

[14] N. Miller, P. Resnick, and R. Zeckhauser. Eliciting honest
feedback: The peer-prediction method. Management Science,
51(9):1359–1373, 2005.

[15] B. Mobasher, R. Burke, R. Bhaumik, and C. Williams.
Towards trustworthy recommender systems: An analysis of
attack models and algorithm robustness. ACM Transactions
on Internet Technology, 7(2):1–40, 2007.

[16] M. O’Mahony, N. Hurley, and G. Silvestre. Promoting
recommendations: An attack on collaborative filtering. In
Proceedings of the 13th International Conference on
Database and Expert System Applications, pages 494–503.
Springer-Verlag, 2002.

[17] M. P. O’Mahony, N. J. Hurley, and G. C. M. Silvestre.
Detecting noise in recommender system databases. In
Proceedings of the 2006 International Conference on
Intelligent User Interfaces, pages 109–115, 2006.

[18] N. Poor. Mechanisms of an online public sphere: The
website slashdot. Journal of Computer-Mediated
Communication, 10(2), 2005.

[19] P. Resnick and R. Sami. The influence limiter: Provably
manipulation-resistant recommender systems. In Proceedings
of the ACM Recommender Systems Conference (RecSys07),
2007.

[20] J. Sandvig, B. Mobasher, and R. Burke. Robustness of
collaborative recommendation based on association rule
mining. In Proceedings of the 2007 ACM Conference on
Recommender Systems, 2007.

[21] Slashdot, 2009. http://www.slashdot.com.
[22] Yelp, 2009. http://www.yelp.com.

-70-

Does Trust Influence Information Similarity?
Danielle H. Lee & Peter Brusilovsky

School of Information Sciences
University of Pittsburgh

135 N. Bellefield Ave. Pittsburgh, PA, USA
+1-412-624-9437

{hyl12, peterb}@pitt.edu

ABSTRACT

In collaborative filtering recommender systems, users cannot get
involved in the choice of their peer group. It leaves users
defenseless against various spamming or “shilling” attacks. Other
social Web-based systems, however, allow users to self-select
trustworthy peers and build a network of trust. We argue that
users self-defined networks of trust could be valuable to increase
the quality of recommendation in CF systems. To prove the
feasibility of this idea we examined how similar are interests of

users connected by a self-defined relationship in a social Web
system, CiteuLike. Interest similarity was measured by similarity
of items and meta-data they share. Our study shows that users
connected by a network of trust exhibit significantly higher
similarity on items and meta-data than non-connected users. This
similarity is highest for directly connected users and decreases
with the increase of distance between users.

Categories and Subject Descriptors

H.1.2 [User/Machine Systems]: Human Factors; Software
Psychology; J.4 [Social and Behavioral Sciences]: Sociology

General Terms

Measurement, Human Factors

Keywords

User Similarity, Trust, Human Network

1. INTRODUCTION
Recommender systems powered by collaborative filtering (CF)
technologies become a feature of our life. Such popular systems
as Amazon.com, Netflix, Last.fm, and Google News use
Collaborative filtering to recommend us products to buy, movies
to watch, music to listen and news to read. The power of this
technology is based on a relatively simple idea: starting with a

target user’s rating, find a peer cohort (neighborhood) of users
who have similar interests and recommend items favored by this
cohort to the target user. As such, the choice of cohort is an
essential part in CF recommendations and is usually determined
by automatically calculating rating similarities between the target
user and other users. In a typical CF system, this peer cohort (a
group of users selected as the basis for CF) is unknown to target
users. Moreover, the target users cannot add trustworthy users to

their cohort group nor exclude suspicious users from the group.

The success of social linking and bookmaking systems that allow
users to build their networks of trust, stresses a fact forgotten by
modern CF systems: the source of the recommendation is an
important criterion for judging the quality of recommendations [2].
A range of Web 2.0 systems such as LlinkedIn, Flickr, Delicious,
CiteuLike etc., provide various kind of social linking, enabling
their user to pick known and trusted users and add them to their

list of connections. These self-defined links between users
establish a rich network of trust, which is, in turn, used to
propagate various kinds of information. Given that, it is natural to
expect some kind of merger between social linking and CF

technology: a new generation of trust-based recommender

systems, which will use self-defined social networks of trust to
improve the quality of CF systems and the satisfaction of their
users. Some pioneer works in this direction already appeared [4, 5,
6, 9, 13]

To prove that trust-based recommenders are more than a
speculation, some important assumptions have to be checked. Is it
true that connected users in the networks of trust share not only

trust, but also some common interests? Is it true that information
can flow along these networks, i.e., the choices made by users are
affected by the choices of users they trust? The goal of this paper
is to test these assumptions. Using real life data collected from a
social Web system, CiteuLike, we examined several important
properties of self-defined trust networks. We investigated how
similar are users’ interests in these networks, the extent to which
amount of similar information collected by users depends of the
strength of their connection, and ultimately, how feasible it may

be to use a network of trust for personalized recommendation.

The term ‘trust’ as used in this paper may not be an exact match
with the general use of ‘trust’ as defined in the sociology. The
social relationship used in this paper is defined unilaterally,
simply indicating user trust in the usefulness of information
provided by connected individual. It is not trust through personal
interaction or emotional support (for instance, connected with an
expectation of obligation, morality or responsibility [7]). Since

referred users are deemed “trustworthy” by the target user in
terms of information collection, however, the term ‘trust’ was
selected. Furthermore, the term ‘trust’ as defined in the Webster’s
Third New International Dictionary meets our interpretation of
‘trust.’ Its definitions for the term are “a confident dependence on
the character, ability, strength, or truth of someone or something,”
“confident anticipation,” and “a charge or duty imposed in faith
and confidence or as a condition of some relationship” [7]. To

date, a better or more precise term for this relationship has not
been found; hence, trust is used hereafter.

2. RELATED WORK
The popularity of CF technology, revealed some problems. CF
appeared to be not well-protected against malicious users who try

to harm the system or to make a profit by gamming the system.
For example, by copying the whole user profile, a malicious user
is perceived by the system to be a perfect peer user and the
products added by him are therefore recommended to the target
user [3, 5, 8]. Even without malicious users the quality of
recommendation can be affected by peculiar users with unusual

-71-

interests [10]. Moreover, since CF systems have to compare all
other users in order to find the peer group, the computation
requires substantial off-line process [4]. Finally, users who do not
have sufficient ratings are not able to receive reliable
recommendations [10]. These CF-related problems occur in part

because the recommender systems make a choice of peer group
purely by similarity computation, and do not allow the target users
to affect this part of the recommendation process.

Several research teams attempted to exploit trust between users to
resolve some of the cited problems of CF technology. Massa and
Avesani’s study [4] showed that a user’s trust network can solve
the ad-hoc user problem, improve recommendation prediction and
attenuate the computational complexity. Another study indicated

that a trusted network decreases the recommendation error and
increases the accuracy as well [9]. For users with a unique taste,
their own trusted network could increase the satisfaction of
recommendation, since they are able to know where the
information came from [12]. The recommendations made by
friends were known to be frequently better and more useful than
the recommendation made by systems [11].

To prove the feasibility of trust network as a source of

information for reliable recommendation, several research teams
started with checking the main assumption: do users linked by
self-defined networks of trust have similar interests.

Singla and Richardson (2008) found the positive correlation of
frequency and time of instant messaging between users with
search interests [11]. Another trust-related research suggested that
two users who are friends tend to share similar vocabularies, in-
links and out-links on their personal homepages [1]. Ziegler and

Golbeck [13] compared interest similarity between people in a
trusted network. They used information regarding users and the
user’s trust ratings in the book recommendation. Rather than using
each information item, they grouped the items by topics, using an
existing taxonomy. Then, they built topic-based user profiles and
the closeness of the user profiles in the trusted network was
assessed. As the conclusion, they found that topic-based user
profiles became more similar as the trust values between two
users increased and reduced the data sparsity problem existing on

the comparison of individual item [13]. Our work presented below
was motivated the same goal: to assess interest similarity between
users connected by relationship of trust.

3. DATA COLLECTION

3.1 Data Sets
As a source of data for our study we selected CiteuLike, a social
Web system for sharing bibliographic references. To pick up

initial set of users, we visited this site randomly in September and
October of 2008. Users who posted new articles at the time of
visit were picked. The information collected for each user
included the bibliography (article title, list of authors, journal
name, publication year, etc.) and the watchlists (connected users).
After collecting a group of initial users, we collected data of their
trusted connections. Table 1 shows the descriptive statistics.

In collaborative tagging systems explicit connections between
users are of special nature. In some sense, they bear more “trust”
than the connections between friends in social networking systems.
In CiteuLike, users can directly connect to other users who have

interesting bibliography by adding them ‘watch list.’ Then the
system displays the whole bibliography of watched users.

Table 1. Data Summary of CiteuLike

Total no. of users 21076

Total no. of distinct items (papers) 449824

Average no. of items per user 28.69

Total no. of unidirectional relation 11295

Total no. of reciprocal relation 93

3.2 The Networks of Trust
In this paper, we interpret user’s act of connecting to other users
(by adding this user to the watch list) as a sign that she likes the
focus and trust the quality of the added user’s references and
wants to have direct access to them continuously in future. Thus,
watching in CiteuLike could be considered as evidence that

connected users are trustworthy to the original user in terms of
information collection.

We distinguish two kinds of trusted connections – unidirectional
and reciprocal. The act of adding another user to the ‘watch list’ is
unidirectional (which is different from social networking systems).
If user A added user B to her network, it does not imply that user
B will be added to A’s network necessarily. The users in A’s
network decide independently whether to add A to their networks.

For example, user B may not have A in his network and we call
the relationship between A and B as ‘unidirectional’. Another user
C in A’s network may add A to his network as well. We call this
relationship as ‘reciprocal’ (Figure 1).

Figure 1. Directions of relation in the center of user A

Figure 2. Relation distance in the center of user A

We also distinguish distances of connections to investigate the

transitivity of common interests in the networks of trust. Three
distances between users in trust networks were explored: direct,
one hop and two hops. In the above example, user A and user B
are in ‘direct’ relationship. If user B is trusting user D, user A and
user D are in ‘one hop distance’ unidirectional relationship
(Figure 2). If user E belongs to the watch list of user D, users A
and E are in ‘two hop distance’ unidirectional relationship. These
distances can be applied to the reciprocal relationship as well.

4. DATA ANALYSIS
In this study we tested how similar the information shared by
people in trusted network is. Specifically, we counted the number

-72-

of shared information items (academic papers) and meta-data. In
CiteuLike context, authors and journals (or conferences) is a good
example of meta-data.. In our study, however, we considered
authors only since it is more reliable and easy to track. Following
Ziegler and Golbeck [13] experience with topics (which is another

kind of metadata), we expected that the users who share the same
interests may not necessarily agree about specific items, but
demonstrate higher agreement on the level of meta-data (authors).

Since sizes of item collections varied dramatically from user to
user, we had to examine both absolute and relative similarity
measures. I.e., in order to measure between-users’ information
similarity, we not only used absolute numbers (i.e., number of
common items), but we also compared relative (normalized)

Jaccard similarity: proportion of shared items in respect to the
whole collections of connected users. We used three meaningful
relative similarity measures as dependent variables. Figure 3 and
the following equations explain the meaning of these measures.

Figure 3. Information Overlap

 eq. (1)

 eq. (2)

 eq. (3)

If user A added user B to her trusted network (i.e, A points to B),

the inlink power (impact) of the user B for the user A represents
how much the information of user A is influenced by the
information of user B. The outlink power of User B is how much
the information of user B affects the user A. The overall power
measures the fraction of overlapped information in the joint
information space of both users.

For the information similarity in trusted network, the following
hypotheses were assessed: H1. Users connected by direct or
indirect relationships of trust have more similar information items
and meta-data than a non-connected pairs. H2. Users in reciprocal
relations have more similar information item and meta-data than
users in unidirectional relations.

5. THE RESULTS

5.1 Information sharing in trusted network
To test whether users connected by direct or distant links of trust
share more information than non-connected pairs (H1), we
compared both absolute numbers of shared information items and
their normalized numbers (inlink, outlink, and overall powers)

using one-way ANOVA test.

First, we explored the number of shared items and meta-data.
Table 2 shows mean numbers of shared items and meta-data for
direct and distant relationship on contrast to a non-related pair of
users (which we can interpret as infinite distance). At average,
direct pairs share the largest number of items and meta-data. The
numbers are decreasing with the increase of distance in the
network of trust achieving its minimum for non-connected pairs.
This is the evidence that users connected in a network of trust do

have significantly more similar interests than non-connected users.
We can also consider it as an evidence of information propagation

along a network of trust, although impressive similarity on the
meta-data level (which are hard to propagate!) hints that interest
similarity may play a more important role than propagation in the
observed phenomenon. As Table 2 shows, reciprocal relationships
exhibit the same pattern, also with significant differences between

columns in the number of shared information items and meta-data.

Table 2. The Average Number of the Common Information

 Direct 1hop 2hops No Rel.

Unidirect-

ional

Items .82 .20 .14 .00
F (3, 412315) = 6961.18, p < .001

Meta-data 22.65 18.85 20.04 .02
F (3, 412315) = 618.37, p < .001

Reciprocal Items 8.35 1.50 .72
F (2, 1368) = 137.40, p < .001

Meta-data 93.02 67.77 33.59
F (2, 1368) = 9.16, p < .001

Second, we explored differences between relative similarity

measures – fractions of shared items and meta-data for
unidirectional relationship (Table 3) and reciprocal relationships
(Table 4). In both cases, same pattern can be observed for relative
similarity measures: directly related users have the largest fraction
of shared items and meta-data and the fractions decrease with the
increase of the distance between users and reach the minimal level
for not connected users (infinite distance).

Table 3. The Average Similarity Powers of Common
Information (Unidirectional Relations)

 Direct 1hop 2hop No Rel.

Items Inlink 2.01% 0.55% 0.41% 0.03%
F (3, 412315) = 2841.92, p < .001

Outlink 0.85% 0.17% 0.10% 0.00%
F (3, 401164) = 5643.51, p < .001

Overall 0.35% 0.07% 0.04% 0.00%
F (3, 412315) = 7696.06, p < .001

Meta-

Data

Inlink 5.33% 1.64% 1.54% 0.02%
F (3, 412315) = 1969.01, p < .001

Outlink 2.87% 2.88% 2.74% 0.03%
F (3, 401164) = 1383.66, p < .001

Overall 1.25% 0.77% 0.76% 0.01%
F (3, 412315) = 908.51, p < .001

Table 4. The Average Similarity Powers of Common
Information (Reciprocal Relations)

 Direct 1hop 2hop

Items Inlink &

Outlink
6.79% 1.05% 0.37%

F (2, 1368) = 160.70, p < .001

Overall 2.45% 0.32% 0.10%
F (2, 1368) = 258.52, p < .001

Meta-data Inlink &

Outlink
13.01% 6.48% 3.20%

F (2, 1457) = 36.08, p < .001

Overall 4.79% 2.47% 1.26%
F (2, 1456) = 23.92, p < .001

In addition to demonstrating a clear connection between item and
meta-data level similarity and user closeness in a network of trust,
the data shown above allows to make interesting observations.
First, as we expected, between-user similarity on the level of

meta-data is much larger than similarity on the level of items for
both systems. For example, the inlink power similarity of items in
direct relation is 2.01% while inlink power similarity of meta-data
in the same direct relation was 5.33%. Second, both absolute and

-73-

relative similarities are pair-wise larger for reciprocal than for
unidirectional connections for all distance levels. This difference
is most pronounced in relative form reaching its highest level for
direct reciprocal relations (6.79% for items and 13.01% for
metadata). Next section examines the difference between

reciprocal and unidirectional connections in details and checks its
significance.

5.2 Unidirectional vs. Reciprocal Relations
To compare the differences of information sharing pattern
between unidirectional and reciprocal relations, we started with
comparing the number of shared information items and meta-data,
doing it now separately for several distances of relations. In all
three distances but meta-data of 2-hop connection, the numbers of

shared information items and meta-data in reciprocal relations
were significantly larger than in unidirectional relations. In case of
meta-data of 2-hop relation, there was no significant difference.

Secondly, we checked the significance of observed differences in
relative information item similarity between reciprocal and
unidirectional relations (Table 6). For direct and 1-hop
relationship, the differences appeared to be significant, i.e., users
connected by a direct or 1-hop distanced reciprocal relation shared

significantly larger fractions of information items than users
connected by unidirectional relation. For 2-hops relations the
observed difference appeared to be non-significant for one out of
three relative similarity measures.

Table 5. Results for Powers of Information Items

 df t-value Sig.
Inlink

Power

Direct 11478 -7.39* p < .001

1Hop 17787 -2.57* p = .010

2Hop 30568 .321 p = .748

Outlink

Power

Direct 11478 -21.35* p < .001

1Hop 17787 -14.05* p < .001

2Hop 30568 -7.70* p < .001

Overall

Power

Direct 11478 -21.09* p < .001

1Hop 17787 -13.08* p < .001

2Hop 30568 -5.93* p < .001

On the final step we compared relative information meta-data
similarity for reciprocal and unidirectional relations (Table 7).
The relative source similarity was significantly higher for users
connected by direct and 1-hop reciprocal relation than for users
connected by unidirectional relations of the same distance. Two
out of three relative similarities were significantly larger for

reciprocal relations.

Table 6. Test Results about Power of Meta-data

 df t-value Sig.
Inlink

Power

Direct 11356 -6.83* p < .001

1Hop 17596 -10.66* p < .001

2Hop 30597 -4.82* p < .001

Outlink

Power

Direct 11356 -12.79* p < .001

1Hop 17596 -6.11* p < .001

2Hop 30597 -1.00 p = .318

Overall

Power

Direct 11356 -9.71* p < .001

1Hop 17596 -7.52* p < .001

2Hop 30597 -2.78* p = .005

6. CONCLUSION AND DISCUSSION
To prove the feasibility of users’ self-defined relations of trust as
the bases of recommendation, we examined how similar interests
of users connected by a self-defined relation of trust are. Using

CiteuLike datasets, we found that user connected by a self-defined
relation of trust have more common information items and meta-
data than user pairs with no connection. The similarity was largest
for direct connections and decreased with the increase of distance
between users in the network of trust. Users involved in a

reciprocal relationship exhibited significantly larger similarity
than users in a unidirectional relationship on all levels. Moreover,
similarity on the level of meta-data (authors) was larger than
similarity on the level of individual items (references).

While the results of our study support the idea of using networks
of trust in CF systems, they still do not answer the question how
to use this information to improve the quality of recommendation.
In out future studies we plan to address this issue. As the first step,
we will investigate the impact of trusted networks on
recommendation quality using our CiteuLike data set. We will
also explore how information propagates within trusted networks

and investigate the influence of information authorities who play a
leading role in disseminating the information. In later studies, we
plan to expand our target domains by adding different data sets.

7. REFERENCES
[1] Adamic, L. A. & Adar, E. (2003) Friends and neighbors on the Web,

Social Networks, 25 (3), pp. 211 ~ 230.

[2] Bonhard P. & Sasse M. A. (2006) Knowing me, Knowing you -

Using Profiles and Social Networking to Improve Recommender

Systems, BT Technology Journal, Vol. 25 (3)

[3] Lam, S. K. & Riejl, J. (2004) Shilling Recommender Systems for

Fun and Profit, In: Proceedings of World Wide Web 2004, New York,

NY, USA, pp. 393 ~ 402

[4] Massa, P. & Avesani, P. (2004) Trust-aware Collaborative Filtering

for Recommender Systems, In: Proceedings of Federated

International Conference On The Move to Meaningful Internet, Agia

Napa, Cyprus, pp. 492 ~ 508

[5] Massa, P. & Avesani, P. (2007) Trust-aware Recommender System,

In: Proceedings of Recommender System 2007, Minneapolis, MN,

USA, pp. 17 ~ 24

[6] Maltz, D. & Ehrlich, K. (1995) Pointing the Way: Active

Collaborative Filtering, In, Proceeding of CHI’ 95, Denver, CO,

USA, pp. 1 ~ 8

[7] McKnight, D. H. & Chervany, N. L. (1996). The Meanings of Trust.

University of Minnesota,

http://misrc.umn.edu/wpaper/WorkingPapers/9604.pdf (accessed on

July, 2008)

[8] Mehta, B., Hofmann, T., Nejdl, W. (2007) Robust collaborative

filtering, In: Proceedings of Recommender System 2007, Minneapolis,

MN, USA, pp. 49 ~ 56

[9] O’Donovan, J. & Barry, S. (2005) Trust in Recommender Systems,

In: Proceedings of the 10th International Conference on Intelligent

User Interfaces, San Diego, California, USA, pp. 167 ~ 174.

[10] Schafer, J. B., Frankowski, D., Herlocker, J. & Sen, S. (2007)

Collaborative Filtering Recommender System, In: Brusilovsky, P.,

Kobsa, A. & Nejdl, W. (Eds.) The Adaptive Web: Methods and

Strategies of Web Personalization, pp. 291 ~ 324

[11] Singla, P. & Richardson, M. (2008) Yes, There is a Correlation -

From Social Networks to Personal Behavior on the Web, In:

Proceeding of the 17th International World Wide Web Conference,

Beijing, China.

[12] Sinha, R. & Swearingen, K. (2001) Comparing Recommendations

Made by Online Systems and Friends, In: Proceedings of DELOS

Workshop on Personalisation and Recommender Systems

[13] Tintarev, N. & Masthoff, J. (2007) Effective explanations of

recommendations: user-centered design. In: Proceedings of

Recommender System 2007, Minneapolis, MN, USA, pp. 153-156

[14] Ziegler, C. & Golbeck, J. (2007) Investigating interactions of trust

and interest similarity, Decision Support Systems, 43, pp. 460 ~ 475

-74-

A Holistic Approach to Enhance the Doctor-Patient

Relationship for Diabetes Using Social Networking,

Personalized Alerts, Reminders, and Recommendations
William WL Yip

University of Hawaii, Manoa
1680 East-West Road,
Honolulu, HI 96822, USA

1-808-956-9988

wyip@hawaii.edu

Luz M. Quiroga
University of Hawaii, Manoa

1680 East-West Road, POST 314B,
Honolulu, HI 96822, USA

1-808-956-9988

lquiroga@hawaii.edu

Abstract

This paper describes an ongoing project that proposes the

conceptual design of a decision-support system (DSS) based on

patient modeling that enhances the communication and

relationship among health care providers and patients with

diabetes. This project attempts to answer the following two

research questions: 1) What are the challenges in the current

relationship between a diabetic patient and his/her health care

providers? 2) Can a DSS based on providing motivation support

through social networking, personalized alerts, reminders, and

recommendations improve objective and subjective factors that

affect the overall health outcome of a diabetic patient?

Categories and Subject Descriptors

H.4.2 [Information Systems Applications]: Types of Systems –

Decision support (e.g. MIS)

General Terms

Design, Experimentation, Human Factors

Keywords

Compliance, Diabetes, Empowerment, Information Filtering,

Personalization, Social Networking

1. Introduction
This paper describes an ongoing project that proposes the

conceptual design of a decision-support system (DSS) based on

patient modeling that enhances the communication and

relationship among health care providers (i.e. physicians and

nurses) and patients with diabetes. With more than 23 million

Americans suffering from diabetes [3], health care providers and

researchers have devised ways to improve diabetic patients’

overall health outcome as well as to reduce expensive acute

episodes as a result of non-compliant lifestyle activities [14]. In

spite of these efforts, there remains a gap in the communication

channel among health care providers and diabetic patients. This

gap is attributed by the fact that most health care providers resort

to the traditional model of compliance and adherence to treat

chronic illnesses like diabetes [2]. This model, which was based

on a health care system that provided the majority of its treatment

for acute illnesses [1], can have potential damaging effects on the

provider-patient relationship. Instead, the empowerment

approach emerged in the early 1990's as a new model to promote

equal partnership among providers and diabetic patients [7, 9, 12,

17]. A DSS based on patient modeling can potentially facilitate

this new approach. Effective communication among health care

providers and patients can be facilitated by a DSS that:

For patient:

• Provides motivational support through social networking

sites (SNSs).

• Provides alerts and reminders to motivate patient to comply

with lifestyle-changing activities.

• Provides personalized recommendations of trusted health-

related information based on individual patient’s situation.

For health care provider:

• Provides personalized alerts and reminders when his/her

patient’s physiological parameters (e.g. blood glucose level)

are out of range.

• Provides personalized recommendations of treatment options

based on evidence-based guidelines.

Situation of each patient is unique. In [13], the study showed the

importance of context in users’ relevance feedback in information

filtering (IF) systems for delivery of personalized consumer health

information. The study identified non-topical characteristics such

as lifestyle, domain expertise, credibility of information sources,

and comprehensibility. To increase patients’ motivation to change

behavior, providing the right information to the right patient at the

right moment is crucial. To achieve this, a holistic model of the

patients is required. In the health care domain, many

opportunities exist for profiling patients. A holistic model may

include:

• Electronic Medical Record (EMR)

• Vital signs and physiological parameters collected from

outpatients settings (e.g. blood pressure, blood glucose level)

• Quality-of-Life (QOL) issues (e.g. food intake, exercise)

-75-

• Web browsing behavior that includes health-related

websites, social networking sites (SNSs), and patient support

groups

This information can be fed to an agent-based DSS which in turn

provides alerts, reminders, and recommendations to both health

care providers and patients.

2. Conceptual Framework
Why do diabetic patients remain non-compliant to lifestyle-

changing activities in spite of the physical, psychological, and

financial burdens that diabetes place on them? The problem lies

in the application of the compliance and adherence model in

diabetic care. In chronic diseases like diabetes, this model places

the patients in a submissive position obeying authoritative care

providers [8]. Health care providers often feel frustrated with

their patients’ non-compliant activities. Vice versa, patients feel

frustrated with their lack of knowledge and understanding of the

disease as well as blames from their care providers for their non-

compliant activities. What is needed is an approach that: 1)

redefines the roles and responsibilities of both patients and care

providers; 2) create a relationship that promotes collaboration and

partnership [5]. Considerable amount of research has been done

to facilitate this approach. Since the early 1990’s, there has been

a push for patient empowerment that gives control to both patients

and care providers [7, 9, 12, 17]. In [5], the authors even

downplayed the importance of compliance, claiming that

compliance becomes irrelevant if patients are “viewed as

collaborators who establish their own goals”. In a community-

based diabetes self-management education program [6], the study

encouraged patients to find their own solutions that fit their

psychological and physical needs. In a study conducted with 85

type-2 diabetic patients [12], individuality was identified as one of

the five issues that are pivotal to effective management of the

disease. It is a patient-centered approach where information

delivered to patients is based on their individual needs and

concerns.

Diabetic patients need to make informed decisions in order to

manage their disease effectively. Informed decisions are based on

information provided to patients pertaining to their individual

needs and circumstances. Personalized recommendations are

provided to diabetic patients in a health information tailoring

system called Violet Technology (VT) in [9]. VT is a web portal

that performs information filtering and prioritization based on

patients’ profiles in Diabetes Information Profile (DIP). There are

5 components in DIP:

• Diabetes-related situation: current lifestyle, diabetes

education exposure, self blood glucose tests, medications.

• History of information browsing

• Patient information preference

• History of quizzing

• History of agenda generation

The presentation of the information is adapted based on a two-

step process. First, information is filtered using a series of rules

(e.g. removing female issues for male patients). Then, information

is ordered by its significance based on priority assigned to each

information item. The patient-modeling approach of VT allows

diabetic patients to access information relevant to their individual

situations more efficiently. Furthermore, the agenda service

allows patients to generate a list of 5 questions that they can bring

to their health care providers during their office visits. Although

this research shows the face validity of such information tailoring

system for diabetic patients, it falls short of being a

comprehensive approach for both diabetic patients and their

health care providers. Such approach can help bridge the

communication gap and provide an environment of equal

partnership among all stakeholders. Research has shown that a

decision-support system can help health care providers follow

clinical guidelines, which eventually leads to improved care [15].

Motivation is a key component in successful management of

diabetes. Self-determination theory distinguishes between

autonomous and controlled behaviors [18, 19]. Patients are

autonomously motivated when their desire to change behaviors

comes from within themselves; while behaviors are controlled

when patients are pressured from external forces to change their

daily activities. Two separate studies [18, 19] showed that

patients’ autonomous motivation is strongly correlated to their

perception of their providers’ autonomous support. It is

autonomous motivation that leads to patients’ competence in

making lifestyle changes, and is therefore an important factor to

be considered in reducing the communication gap among diabetic

patients and health care providers.

Social networking sites (SNSs), mostly in terms of support groups

around health issues, has a long tradition, starting with first

generations of social tools of the 1980’s exemplified by the

“Well” community in Rheingold’s book “The Virtual

Community” to activities such as Sermo (http://www.sermo.com/)

- social networking for licensed physicians, NurseConnect

(http://www.nurseconnect.com/),Nurses’ Lounge

(http://www.nurseslounge.com), and specific groups (by illness,

treatment, therapies, etc). More recently, progress has been made

in Second Life (http://secondlife.com) with islands such as Health

Info Island, Karuna (AIDS), Virtual Ability Island (disabilities),

and Rachelville (parents of terminally-ill kids). Virtual events are

held to promote “social engagement” such as the recent Helen

Keller Day, organized by EASI: Equal Access to Software and

Information (http://easi.cc), as part of its commitment with

students and professionals with disabilities to have the same right

to access information technology as everyone else.

In a pilot study [11], five participants were interviewed on their

perceptions (both positive and negative aspects) on SNSs and

which properties of SNSs can facilitate online support and

adherence to health-related regimens. The study found that SNSs

were most instrumental in providing emotional (e.g.

encouragement from a friend) and informational (e.g. a tip to

perform a task) support. Furthermore, users of SNSs tend to build

and strengthen existing relationships among family members and

friends rather than to meet new friends. This preliminary result

suggests that SNSs can potentially have a positive effect for

diabetic patients who rely on their close ones for motivation. In

the following section, a solution incorporating personalized alerts,

reminders, and recommendations, as well as social networking

features will be proposed.

-76-

3. Solution
This section provides a brief description of each component of the

DSS that this project proposes. Figure 1 below illustrates a

conceptual diagram of an agent-based DSS that provides

personalized alerts, reminders, and recommendations, as well as

motivations through social networking.

Figure 1 Conceptual Design of a design-support system for

diabetic patients and health care providers

Although they provide similar functions, it is important to point

out the minor differences between alerts, reminders, and

recommendations. The following scenario illustrates the

differences:

John is a 56-year-old man who was diagnosed with diabetes

5 years ago. He monitors his blood glucose level daily using

a blood glucose meter provided by his primary care

physician. He receives an alert from the meter when his

blood glucose level is 10% above his acceptable range. He

has an office visit with his dietician every 6 months. He

creates a reminder on Google Calendar to remind himself of

the appointments. Lastly, John’s brother was recently

diagnosed with diabetes so John sent an online article from

WebMD about recommendations on how to perform foot

care on a periodic basis.

From the patients’ perspective, there are 3 primary data sources

where profiling information can be collected: 1) vital signs and

physiological parameters; 2) QOL issues; and 3) web browsing

behaviors. Vital signs and physiological parameters are

measurements that are collected periodically by patients

themselves in remote settings. Examples are blood glucose level

and blood pressure. QOL issues are qualitative indicators of how

well patients are managing their disease. QOL issues may be the

amount of exercise that a patient is performing daily, or the

lifestyle preferences of the patients (e.g. smoker, preference to

alternative treatment, their personal goal, plans, strategies, success

and impediments regarding their management of the disease).

Together, quantitative measurements of vital signs and

physiological parameters and qualitative indicators of QOL issues

form a unique model of each patient. In an exploratory study

[10], they designed the CHAP (Continuous Health Awareness

Program) system that engage patients to reflect on their

breakdown activities and to build correlations between these

activities and the collected data on the patients’ blood glucose

values. Based on the collected data on an individual’s vital signs,

physiological parameters, and QOL issues, a DSS can provide

personalized alerts, reminders, and recommendations.

Patients’ web browsing behaviors provide a clue on what their

information needs are. For instance, a patient who often searches

for information about a particular drug indicates that he may be

prescribed with the drug and in need for additional information

(e.g. recent findings on side effects). A DSS can provide

personalized recommendation of health-related information from

trusted source (e.g. National Library of Medicine, MedlinePlus).

From the health care provider’s perspective, patients’ clinical data

includes demographic information about the patient, clinical test

results, history of drug prescriptions, history of vital signs and

physiological parameters, and etc. This, typically in the form of

Electronic Medical Record (EMR), is an enormous source of

information that provides many opportunities for decision-support

services based on evidence-based guidelines. Integrating

evidence-based guidelines with EMR can help reduce practice

variability and improves the overall quality of care for patients.

The last component of the DSS is an online social network for

both diabetic patients and health care providers. Diabetic

patients, health care providers, family members, and friends

participate in a common medium to provide emotional and

information support for each other. Members can write messages

in public (e.g. a “wall” on Facebook) as well as private areas.

Patients can also post updates on their health status. In addition,

games and puzzles can be used to educate members, increase

participation, and keep members interested over a longer duration.

4. Research Methodology
This ongoing project proposes the following research

methodology, which is broken down into 3 phases.

Phase 1 of the project will focus on the relationship among

diabetic patients and their respective care providers. The research

question of this phase is:

What are the challenges in the current relationship between

a diabetic patient and his/her health care providers? Why

are diabetic patients non-compliant to lifestyle-changing

activities?

To answer this research question, in-depth interview sessions will

be conducted with diabetic patient educators and coordinators

from various health institutions. Patient educators act as

intermediaries between patients and care providers who can

provide their unbiased opinions. In a way, they are “human

agents” that perform similar functions that a potential DSS could

do. The focus of the interview questions will center on the

existing communication means (or lack thereof) among diabetic

patients and health care providers.

Phase 2 of this project involves the conceptual design of the social

networking component of a DSS. The specifications and design

of this component will be based on interview results from Phase

1. In Phase 2, the prototyped social networking component will

be integrated with an existing DSS called Comprehensive Disease

Management Program (CDMP) (http://www.estenda.com), which

is based on the Chronic Care Model [16]. CDMP, currently

operational in more than 70 clinics in the Indian Health Service,

allows patients to upload their physiological parameters (e.g.

blood glucose) and images. This data is then combined with

laboratory results and other patient records to provide decision-

support services to patients and health care providers. The social

-77-

networking component implemented in this phase will build upon

the existing patient profile in CDMP.

The last phase of this project is to evaluate the effectiveness of the

social networking component of a DSS implemented in Phase 2.

The research question of this phase is:

Can a DSS based on providing motivation support through

social networking improve objective and subjective factors

that affect the overall health outcome of diabetic patients?

The independent variable of this experimental study is the

existence of a social networking component in health care setting;

while the dependent variable is the objective and subjective

factors that affect a diabetic patient’s overall health outcome. The

control group is a group of diabetic patients and health care

providers who will not be provided with the social networking

component; while the experimental group will evaluate the social

networking component implemented in Phase 2. About 50

participants will be chosen from existing users of the CDMP into

the control and experimental groups, respectively.

Objective factors are facts that can be measured quantitatively

(e.g. patient compliance to measuring blood glucose level, number

of times a patient is admitted to a hospital because of

complications). On the other hand, subjective factors (e.g.

motivation to comply with lifestyle-changing activities, patients’

perception of the health care system) are more difficult to measure

quantitatively. In this phase, both qualitative and quantitative data

will be collected. Objective factors will be measured through a

self-reported questionnaire comprised of 6 compliance

components: exercise, hypoglycaemia, foot care, diet, home

monitoring, and drug [4]. Statistical analysis will be performed to

measure the effects of the existence of the social networking

component. Subjective factors will be evaluated through an

interview session with a subset of the experimental group. The

focus of the interview session is to determine whether social

networking has an effect on diabetic patients’ perception on their

health care providers. Aspects of the perception of their health

care providers include trust, availability, satisfaction, optimism,

and etc. These factors correspond to the autonomous support that

self-determination theory identifies and have a major effect on

patients’ ability to comply to lifestyle-changing activities.

5. References
[1] Anderson, R. M., & Funnell, M. M. (2000). Compliance and

adherence are dysfunctional concepts in diabetes care. The

Diabetes Educator, 26(4), 597.

[2] Anderson, R. M., & Funnell, M. M. (2005). Patient

empowerment: reflections on the challenge of fostering the

adoption of a new paradigm. Patient Education and

Counseling, 57(2), 153-157.

[3] Centers for Disease Control and Prevention. (2008). National

diabetes fact sheet: general information and national

estimates on diabetes in the United States, 2007. Atlanta,

Georgia: U.S. Department of Health and Human Services,

Centers for Disease Control and Prevention.

[4] Chan, Y. M., & Molassiotis, A. (1999). The relationship

between diabetes knowledge and compliance among Chinese

with non-insulin dependent diabetes mellitus in Hong Kong.

Journal of Advanced Nursing, 30(2), 431-438.

[5] Funnell, M. M., & Anderson, R. M. (2000). The problem

with compliance in diabetes. The Journal of the American

Medical Association, 284(13), 1709.

[6] Funnell, M. M., & Anderson, R. M. (2002). Working toward

the next generation of diabetes self-management education.

American Journal of Preventive Medicine, 22(4), 3-5.

[7] Funnell, M. M., & Anderson, R. M. (2003). Patient

empowerment: a look back, a look ahead. Diabetes Educator,

29(3), 454-464.

[8] Lutfey, K. E., & Wishner, W. J. (1999). Beyond

"compliance" is "adherence". Diabetes Care, 22(4), 635-639.

[9] Ma, C., Warren, J., Phillips, P., & Stanek, J. (2006).

Empowering patients with essential information and

communication support in the context of diabetes.

International Journal of Medical Informatics, 75(8), 577-596.

[10] Mamykina, L., & Mynatt, E. D. (2007). Investigating and

supporting health management practices of individuals with

diabetes. In Proceedings of the 1st ACM SIGMOBILE

international workshop on Systems and networking support

for healthcare and assisted living environments. San Juan,

Puerto Rico: ACM New York.

[11] Olsen, E., & Kraft, P. (2009). ePsychology: a pilot study on

how to enhance social support and adherence in digital

interventions by characteristics from social networking sites.

In Proceedings of the 4th International Conference on

Persuasive Technology (pp. 1-6). Claremont, California:

ACM New York.

[12] Pooley, C. G., Gerrard, C., Hollis, S., Morton, S., & Astbury,

J. (2001). 'Oh it's a wonderful practice... you can talk to

them': a qualitative study of patients' and health

professionals' views on the management of type 2 diabetes.

Health & Social Care in the Community, 9(5), 318-326.

[13] Quiroga, L. M., & Mostafa, J. (2002). An experiment in

building profiles in information filtering: the role of context

of user relevance feedback. Information Processing and

Management, 38(5), 671-694.

[14] Steinbrook, R. (2006). Facing the diabetes epidemic:

Mandatory reporting of glycosylated hemoglobin values in

New York City. New England Journal of Medicine, 354,

545-548.

[15] Vashitz, G., Meyer, J., Parmet, Y., Peleg, R., Goldfarb, D.,

Porath, A., et al. (2009). Defining and measuring

physicians’ responses to clinical reminders. Journal of

Biomedical Informatics, 42(2), 317-326.

[16] Wagner, E. H. (1998). Chronic disease management: what

will it take to improve care for chronic illness? Effective

Clinical Practice, 1, 2-4.

[17] Weiss, M. A. (2006). Empowerment: a patient's perspective.

Diabetes Spectrum, 19(2), 116-118.

[18] Williams, G. C., Freedman, Z. R., & Deci, E. L. (1998).

Supporting autonomy to motivate patients with diabetes for

glucose control. Diabetes Care, 21(10), 1644-1651.

[19] Williams, G. C., Rodin, G. C., Ryan, R. M., Grolnick, W. S.,

& Deci, E. L. (1998). Autonomous regulation and long-term

medication adherence in adult outpatients. Health

Psychology, 17, 269-276.

-78-

Using Wikipedia Content to Derive an Ontology for
Modeling and Recommending Web Pages across Systems

Pei-Chia Chang
Department of Information & Computer Science

1680 East-West Road
Honolulu, HI 96822, USA

1-808-2209701

pcchang@hawaii.edu

Luz M. Quiroga
Department of Information & Computer Science

1680 East-West Road
Honolulu, HI 96822, USA

1-808-9569988

lquiroga@hawaii.edu

ABSTRACT
In this work, we are building a cross-system recommender at the
client side that uses the Wikipedia’s content to derive an ontology
for content and user modeling. We speculate the collaborative
content of Wikipedia may cover many of the topical areas that
people are generally interested in and the vocabulary may be
closer to the general public users and updated sooner. Using the
Wikipedia derived ontology as a shared platform to model web
pages also addresses the issue of cross system recommendations,
which generally requires a unified protocol or a mediator.
Preliminary tests of our system may indicate that our derived
ontology is a fair content model that maps an unknown webpage
to its related topical categories. Once page topics can be
identified, user models are formulated through analyzing usage
pages. Eventually, we will formally evaluate the topicality-based
user model

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval-- Information filtering; H.3.3 [Information
Storage and Retrieval]: Information Search and Retrieval --
Clustering D.3.3

General Terms
User Modeling, Wikipedia, Management, Measurement,
Documentation, Design, Experimentation.

Keywords
Recommender, Agent, User Modeling, Ontology.

1. INTRODUCTION
User modeling through content is one common solution in
recommending web pages across systems [3,7,9,14]. In this work,
we are interested in using the collaborative content of Wikipedia
to derive an ontology as a unified knowledge base for modeling
web pages. Wikipedia is one of the world’s largest collaborative

knowledge bases. Although there are only a few contributors(less
than 10% of user population) to the content of Wikipedia[8], it
has a huge pool of readers. As Sussan describes, “with Web 2.0
products, it is the user’s engagement with the website that literally
drives it.”[13] Similarly, we speculate Wikipedia’s content and its
vocabulary may cover recent and popular topical areas that people
are generally interested in. The language in Wikipedia may be
closer to what the general public use, instead controlled by
domain experts. We emphasize the topics, but not content
accuracy, from Wikipedia may reflect the dynamic information
on the Internet.

Our recommender formulates a user model based on the browsing
behavior at a client side and the usage pages mapped to the
derived ontology. Given the research potentials of Wikipedia’s
content, we are interested in the performance of recommending
web pages based on the Wikipedia derived ontology. Our research
question is "Does the recommender based on the Wikipedia’s
content model provide topically relevant recommendations?"

2. Related Work
Content-based recommenders include WebWatcher[6], Syskill &
Webert[10], WebMate[5], and ifWeb[2]. WebWatcher and
WebMate adopt TF-IDF, the vector space model and similarity
clustering. Syskill & Webert rely on feature extraction,
particularly expected information gain[11], which relies on the
co-existence of related keywords, and relevance feedback. The
system formulates the profile vector that consists of keywords
from pages of positive ratings and against pages of negative
ratings. Then, Bayesian classifier is employed to determine a
page’s topics, and its similarity with the profile vector. ifWeb
employs a semantic network and consistency-based user modeling
shell[4]. In general, these four systems apply statistical
approaches, such as TF-IDF or expected information gain for
keywords extraction and a cluster or classifier for similarity
identification. Our work borrows Wikipedia’s categorization
system and augments it with keywords identified by predefined
heuristics as topical indices. A full listing of existing categories
and indexes in Wikipedia can be found at
http://en.wikipedia.org/wiki/Portal:Contents/Categorical_index.
In our study, page classification depends on the frequency of
those indexing keywords appeared in a web page. Our difference
from the previous systems is the use of Wikipedia’s collaborative
categorization system to derive an ontology that is augmented
with heuristic information extraction from Wikipedia’s content.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’04, Month 1–2, 2004, City, State, Country.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

-79-

jannach
Rechteck

3. Method Description
3.1 System Architecture
Our recommender uses the Wikipedia’s content to derive an
ontology for content and user modeling. With the ontology, our
system automatically assigns the Wikipedia category(s) to a new
page that pass a category’s threshold value, which formulates a
“categorical” vector space model for the page. The system also
captures user interests in the user model through the categories.
Pages of similar topics with the profile will be recommended.

Figure 1 depicts the system's architecture, which will be explained
in the following paragraphs.

Figure 1 System Architecture

There are four major components in the system -- the crawler, the
Wikipedia knowledge base (WikiBase), the sensor, and the
matcher. To begin with the top part of the graph, the crawler
fetches those hyperlinked pages from the usage pages as well as
queries search engines based on the user model managed by the
sensor. Utilizing the sensor, the crawler generates a corresponding
content model for each newly fetched page.

Every component in the system uses WikiBase, which stores
ontologies, keywords, content models and the user model
respectively. We construct WikiBase by combining the
Wikipedia’s categorization system with heuristic information
extraction on keywords. Heuristics include page titles, categorical
labels, anchor texts, italic, bold, and TF-IDF terms. In order to
associate keywords with categories, we extract heuristic keywords
form pages labeled as one of the categories by the Wikipedia’s
editors. Therefore, each category has a list of keywords to be
utilized by the sensor.

The sensor manages the user model and maps usage pages into
content models. It calculates a page's topical relevance and
formulates the corresponding content model according to the
WikiBase’s keyword weight and the word frequency of the web
page. The user model is updated, on a frequency basis, by the
sensor whenever it maps a usage page into a content model.

Therefore, the user model is constantly evolved. In other words, if
a user accesses a specific categorical topic in multiple times or
through multiple pages, the user will score higher in the
corresponding category of the user model. Keyword weighting
and sensing formulas are defined below.

Definitions:
|Kj|, the number of keywords extracted for heuristic type j
|K c|, the number of keywords in category c
|Categories|, the number of categories in the knowledge base
freq(Kij) is the frequency of keyword Kij for heuristic type j
max(K1, … ,Km) is the maximum value among the m elements

The weight of keyword Kij among m heuristics is:

W (Kij) = ∑ aj (
))freq(K, …),j(freq(Kmax

)ijfreq(K

j | Kj|1

)

1 ≤ i ≤ |Kj|, 1 ≤ j ≤ m,
aj is a weighting coefficient assigned to heuristic j.

A page’s Relevance Score Rc to a category c is:

Rc = ∑ d W(Ki c) α
c)ifreq(K 

1 ≤ i ≤ |K c|, 0.5 < α < 1, 1 ≤ c ≤ |Categories|


match full 1, = d

match partial 0.5, < d < 0

As for the matcher, it compares the cosine similarity of those
crawler-retrieved pages with the user model and then generates
recommendations. In addition to cosine similarity, the matcher
also relies on the ontological structure of WikiBase. With the
structure, topical association among web pages can be revealed
and it also helps to identify if a user is interested in particular
domains or not. We define two indices (diversity and specificity)
to represent the coverage of user interests. The following
describes the procedure.

At the beginning, construct a minimal spanning tree that traverses
all the identified categories in the user model. Identified
categories are those categories with a Relevance Score over a
predefined-threshold. In order to connect identified categories
together, connecting nodes, such as parents or neighbors of the
identified categories may be added to the tree. Definitions of the
two indices are as follows:

Diversity index: count the number of edges of the minimal
spanning tree and normalize it by dividing the number of
identified nodes, excluding connecting nodes, in the spanning
tree.
Specificity index: sum the minimal distances from the root to all
identified categories respectively and normalize it by dividing the
number of those identified categories, excluding connecting
nodes.

3.2 Evaluation Method
We plan to recruit a few participants (< 10) in the computer
science domain where we derive WikiBase. Each of them has to
rate a collection (> 300) of web pages based on topical relevance
and novelty. They have to provide certain web pages (>30) of
their interest in advance as the usage source of formulating the

-80-

user models. Afterward, they have to rate the collection. The
ratings will be divided into a training and validation set. Our
system will tune the keyword weight based on the training data.
We will compare our system performance with the SMART
system[12], which utilizes vector space model as well.

4. Current Status & Discussion
4.1 Current Status
We have built WikiBase in the computer science domain, listed at
http://www2.hawaii.edu/~pcchang/ICS699/results.html. We
selected the domain due to its rich data. Two preliminary tests
were conducted on two computer science professionals. In the
first one, w tested the following pages for their topical relevance.

http://www.algosort.com/ (A)
http://tc.eserver.org (B)

Considering only the top two ranking, page A is sensed as
“algorithms” and “genetic algorithms” categories; page B is
sensed as “human-computer interaction” and “usability”
categories. In the evaluation of the classification result, both
participants’ rankings are the same as the system’s ranking,
considering only the top two.

In the second test, we selected fourteen pages, listed in the
appendix, from four topical areas – algorithm, data mining,
human computer interaction (HCI) and computer games. Both
participants have to evaluate at least five categorical keywords of
each page. They have to provide the degree of agreement from 1
(disagree) to 5(agree) about the following statement. "The given
phrase is a topical keyword of the page." The given phrase is a
categorical label generated by the sensor for each page. The
following table summarizes the ratings.

 Participant 1 Participant 2

Algorithm (3 pages) 3.88 2.83

Data Mining (4 pages) 3.95 3.40

HCI (4 pages) 4.22 4.27

Games (3 pages) 2.67 2.2

Average 3.67 3.2

Table 1 Evaluation of Categorical Keywords

From the result, the ranking of both participants’ average scores
is: HCI, Data Mining, Algorithm, and Games. Except for the
game topic, the agreement score is around 4 for participant 1 and
3.5 for participant 2. We suspect that due the wide coverage of
computer games, our system performs worse in that category.
Another reason may be because of the nature of computer science
category. It reflects the common scientific techniques of theory
for producing computer games, which is different from the tested
pages that viewing computer games from a player’s perspective.

We are still in the process of tuning up the keyword weight by
utilizing the computer science pages from Open Directory Project
(DOP) [1]. Pages in ODP are manually categorized by its users
and we use the classification to evaluate our sensor. As for

evaluating the recommendations, we are training the matcher with
pages of a different topical coverage. Eventually, we will apply
the evaluation method described earlier.

4.2 Discussion
Using the Wikipedia categories as an ontological model yields a
simple user profile. This modeling approach benefits significantly
in cross-system recommendations. Our recommendation engine
works at the client side, which eases the privacy concern of
disclosing sensitive information at web servers. Combining
categories with heuristic information extractions leaves rooms for
the selection of heuristics. Different domains or user groups are
able to apply heuristics of interest. Given the above mentioned
advantages, we are looking forward to see the results of our
evaluation.

5. Future Work
The Wikipedia content and categorization system play an
important role in our method to generate recommendations. Our
work emphasizes the framework to automate the ontology
generation and its performance in recommendations.
Nevertheless, the quality of Wikipedia content is controversial. It
will be worthwhile to adopt the same framework to another
Wikipedia-like platform with a different user group, such as
domain experts, to ensure the content quality.

Another interesting area is to study the content statistics, such as
volume or the granularity of the categories, with recommendation
performance. Not every domain in Wikipedia contains rich
categories and articles like computer science. Therefore, the
performance of recommendations may be related to some of the
statistics.

6. Appendix
Due to limited space, only 1st page of each selected topic displays
the categorical keywords.

Algorithms
http://www.algosort.com/
 (Algorithms, Genetic algorithms, Root-finding algorithms,
 Networking algorithms, Disk scheduling algorithms)
http://www.oopweb.com/Algorithms/Files/Algorithms.html
http://cgm.cs.mcgill.ca/~godfried/teaching/algorithms-web.html

Data Mining
http://www.data-mining-guide.net/
 (Databases, Algorithms, Knowledge representation, Natural language
 processing, Knowledge discovery in databases, Machine learning, Data
 mining)
http://www.thearling.com/
http://databases.about.com/od/datamining/
 Data_Mining_and_Data_Warehousing.htm
http://www.ccsu.edu/datamining/resources.html

HCI
http://www.pcd-innovations.com/
(Human-computer interaction, Human-computer interaction researchers,
Usability, Computer science organizations,
Artificial intelligence, Software development)

-81-

http://www.nathan.com/
http://nooface.net/
http://www.hcibib.org/

Games
http://www.robinlionheart.com/gamedev/genres.xhtml
(Image processing, Computer programming, Demo effects
Regression analysis, Computer graphics)
http://open-site.org/Games/Video_Games/
http://www.literature-study-online.com/essays/alice_video.html

7. REFERENCES

[1] http://www.dmoz.org/
[2] Asnicar, F., & Tasso, C. 1997. ifWeb: A Prototype of User

Model-Based Intelligent Agent for Document Filtering
and Navigation in the World Wide Web. In Proceedings
of the 6th International Conference on User Modeling.

[3] Billsus, D., & Pazzani, M. 1999. A Personal News Agent
that Talks, Learns and Explains. In Proceedings of the
3rd Ann. Conf. Autonomous Agents.

[4] Brajnik, G., & Tasso, C. 1994. A Shell for Developing Non-
Monotonic User Modeling Systems. Human-Computer
Studies, 40, 31-62.

[5] Chen, L., & Sycara, K. 1998. WebMate: a personal agent for
browsing and searching. In Proceedings of the second
international conference on Autonomous agents,
Minneapolis, Minnesota, United States

[6] Joachims, T., Freitag, D., & Mitchell, T. 1997. WebWatcher:
A Tour Guide for the World Wide Web. In Proceedings

of the Fifteenth International Joint Conference on
Artificial Intelligence.

[7] Mooney, R. J., & Roy, L. 2000. Content-based book
recommending using learning for text categorization. In
Proceedings of the fifth ACM conference on Digital
libraries, San Antonio, Texas, United States.

[8] Ortega, F., Gonzalez-Barahona, J. M., & Robles, G. 2008.
On the Inequality of Contributions to Wikipedia. In
Proceedings of the 41st Annual Hawaii International
Conference on System Sciences.

[9] Pazzani, M., & Billsus, D. 1997. Learning and Revising User
Profiles: The Identification of Interesting Web Sites.
Machine Learning, 27, 313-331.

[10] Pazzani, M., Muramatsu, J., & Billsus, D. 1996. Syskill &
Webert: Identifying Interesting Web Sites. In
Proceedings of the Thirteenth National Conference on
Artificial Intelligence, Portland, Oregon, United States.

[11] Quinlan, J. R. 1986. Induction of Decision Trees. Machine
Learning, 1(1), 81-106.

[12] Salton, G., & Lesk, M. E. 1965. The SMART automatic
document retrieval systems -- an illustration. Commun.
ACM, 8(6), 391-398.

[13] Sussan, G. 2007. Web 2.0 The Academic Library and the
Net Gen Student (pp. 35): ALA editions.

[14] Zhang, Y., Callan, J., & Minka, T. 2002. Novelty and
Redundancy Detection in Adaptive Filtering. In
Proceedings of the 25th Ann. Int’l ACM SIGIR Conf.

-82-

Personalised Tag Recommendation

Nikolas Landia
University of Warwick

Coventry CV4 7AL
UK

N.Landia@warwick.ac.uk

Sarabjot Singh Anand
University of Warwick

Coventry CV4 7AL
UK

S.S.Anand@warwick.ac.uk

ABSTRACT
Personalised tag recommenders are becoming increasingly
important since they are useful for many document manage-
ment applications including social bookmarking websites.
This paper presents a novel approach to the problem of sug-
gesting personalised tags for a new document to the user.
Document similarity in combination with a user similarity
measure is used to recommend personalised tags. In case the
existing tags in the system do not seem suitable for the user-
document pair, new tags are generated from the content of
the new document as well as existing documents using docu-
ment clustering. A first evaluation of the system was carried
out on a dataset from the social bookmaking website, Bib-
sonomy1. The results of this initial test indicate that adding
personalisation to an unsupervised system through our user
similarity measure gives an increase in the precision score of
the system.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing—Indexing Methods; I.5.3 [Pattern

Recognition]: Clustering

General Terms
Algorithms

Keywords
tag recommendation, tag extraction, social bookmarking

INTRODUCTION
With the advancement of Web 2.0 and social bookmarking

websites, the recommendation of tags for these systems is be-
coming increasingly important. The major difficulties with
tag recommendation for social bookmarking are that tags
are related to specific users and the documents, users and
tags might be unknown to the recommender system. Sug-
gested tags have to be personalised and the system has to
be able to successfully recommend tags for scenarios where
the document, user and/or appropriate tag are not in the
training set.

Existing approaches to automated tagging include super-
vised as well as unsupervised tag recommender systems.
Classifiers [2] and clustering [5] have been used when a set
of predefined tags is known and the task is to assign these

1http://www.bibsonomy.org/

tags to new documents. However, these supervised systems
do not have a solution to the new tag problem, akin to the
new item problem in recommender systems. Clustering can
be used to generate tags from the vocabulary of the docu-
ment set and is thus able to overcome the new tag problem.
However, tags from a vocabulary different from that of the
document’s authors will not be recommended. The super-
vised and unsupervised techniques on their own ignore in-
formation about users that may be available to the system.
People differ in their interests (documents/topics), vocabu-
lary (tags) and context. In order to successfully recommend
tags to users, vocabulary and tagging habits have to be taken
into consideration.

In this paper we suggest a solution to this problem that
consists of clustering the existing documents in order to
identify sets of similar documents which in turn identifies
the set of users whose tags may be propagated to the cur-
rent target user-document pair. A list of potential tags for
the new user-document pair is obtained from the tags of the
similar documents. A score is then calculated for each poten-
tial tag by taking a weighted combination of the similarity of
the document that the tag is assigned to and the similarity
of the user who assigned it, averaged over all posts the tag
appears in. If the score of a tag is below a set threshold,
it means that this tag is unsuitable for the user-document
pair. When the number of suitable tags is below a prede-
fined number t, new tags are generated from the content of
the document.

DOCUMENT CLUSTERING
There are various techniques that can be used to clus-

ter documents. The clustering approach presented by Song
et al. [5] takes into consideration document words and as-
sociated tags. Song’s approach clusters documents into a
predefined number of clusters nc. When finding the cluster
for a new document, each of the nc clusters is considered
and a cluster membership vector is generated for the new
document. The labelling of a document thus has a linear
time complexity O(nc). In our unsupervised approach the
number of clusters is defined by the data and indirectly by
the number of tags w considered in document clustering.
When finding the cluster for the new document, the whole
tree of clusters is considered, so that a document dealing
with a specialised topic is assigned to a leaf node while a
document dealing with a more general, broad topic is as-
signed to a cluster higher up the tree. Nevertheless, the
labelling of documents in our system has a time complexity
of O(log nc) as explained later. The main advantage of our

-83-

approach is that it can find the level of specialisation of a
document in a topic area and the potential set of tags for the
new document reflect its level of specialisation. Moreover,
the system is able to generate new tags.

The algorithm proposed here is a two part unsupervised
document clustering method consisting of a divisive and an
agglomerative clustering part. The aim of the algorithm is
to organise documents into reasonable clusters and define
a predefined number of unpersonalised tags, w, for the
documents based on the clusters they belong to. Note that
these w tags will be generated from words which appear in
the word corpus of the document dataset.

In the first stage of clustering (the divisive part), docu-
ments are clustered using bisecting K-Means [6], for which
different initialisation techniques were examined. Division
of clusters is performed until the documents in a cluster
satisfy the condition that they share at least s of their w
most important words (defined by their tf-idf-score) within
the cluster. The second clustering stage (the agglomerative
part) takes the final set of clusters generated by the divi-
sive part and merges them hierarchically to create a tree
structure of clusters.

The document representation used for clustering is bag-
of-words. Stop-words are removed and the dimensionality
of the data set is reduced to n using document frequency,
which proved to be an effective and cheap technique for di-
mensionality reduction in the experiments carried out by
Yang and Pedersen [7].

Divisive Part

1. define the number of tags w required to be assigned
to each document. This parameter, along with the pa-
rameter s below, indirectly determines the number of
document clusters (leaf nodes in the document hierar-
chy)

2. for each document, find w words with the highest tf-idf
score, tfidf d, as the tags for that document

3. put all documents in one cluster

4. find w words as the tags on the cluster level for this
cluster (see section on finding tags at cluster level)

5. check if the cluster has only documents which share at
least s tags with the cluster level, 1<=s<=w. If yes
final cluster for this recursion path was found, stop; if
no proceed to split the cluster into two

6. split the cluster by finding two new cluster centroids
(as explained in Initialising KMeans below) and as-
signing each of the documents in the cluster to one of
the new centroids using cosine similarity.

7. for each of the two new clusters, perform steps 4-6.

Finding Tags at Cluster Level
Tags at the cluster level can be found by

• taking the t words with highest average tf-idf score
across all documents in the cluster

• recalculating the tf-idf on cluster level tfidf c, treating
clusters as single documents and the words from all
documents within a cluster as members of this single
document

The second approach of recalculating the tf-idf values at
the cluster level has two advantages. Firstly, it makes sure
that the tags found for the given cluster are good for distin-
guishing it from other clusters. Moreover, it is interesting to
observe the change in cluster tags on different levels of the
clustering hierarchy. On the lowest level where clusters are
smallest, the cluster tags will be very specific to the topic
of the documents that are in the cluster. Higher up the
tree, when documents of different specialised topics share
the same cluster, the words that are common between these
documents and at the same time distinguish them from doc-
uments in other clusters will be chosen as cluster tags. The
tags assigned to clusters on different levels in the tree will
thus create a hierarchy of topics from general to specialised.

Initialising K-Means
The standard K-Means algorithm is initialised with ran-

dom points for centroids [1]. This is the cheapest with re-
gard to cost, however the choice of the location of cluster
centroids is not based on any underlying rationale. A better
method is to find two points which are far apart from each
other as centroids.

Our approach is to select the cluster centroids with the
goal of sooner satisfying the end condition of the clustering
process. The end condition in our case is that all documents
assigned to a cluster share at least s of their top w words
with the tags of the cluster. When faced with a cluster
that has to be split, we find the mean of the documents
in the cluster that do satisfy the end condition and set the
centroid of the first cluster to this mean. The candidates
for the centroid of the second cluster are all the documents
which do not satisfy the end condition. From these, the
document that is farthest away from the first centroid by
cosine similarity is set as the second cluster centroid. An
alternative is to select the document for which the tfidf d

scores for words which are tags of the cluster are lowest.
One problem that arises when clustering is that docu-

ments which do not share any attributes with any of the
two cluster centroids will have a cosine similarity of zero to
both centroids and thus cannot be assigned to one of them.
This is overcome by slightly pulling in the cluster centroids
towards the mean of all documents (described as “shrinking”
in the CURE Algorithm [3]) which eliminates values of zero
for attributes.

Agglomerative Part
During the divisive step, documents are partitioned greed-

ily and research has shown that a second pass (using an ag-
glomerative clustering approach) across the resulting clus-
ters (leaf nodes) can help improve the clustering quality by
reversing sub-optimal splits occurring in the divisive step
[8]. Hence, after the divisive step we use the leaf nodes of
the tree and perform agglomerative clustering on them as
described below.

1. start with clusters produced by divisive part

2. find the two clusters for which the mean vectors are
closest by cosine similarity and merge them

3. repeat step 2 until a desired number of clusters r is
reached or until all clusters are merged into one

4. find tags for all clusters by calculating tf-idf on cluster
level (tfidf c) based on the documents in the clusters

-84-

The result is a hierarchy of cluster merges, with each cluster
having w tags which form a topic hierarchy from general to
specialised from the root to leaf nodes.

GENERATING NEW TAGS
To generate new tags for a document, the tf-idf score in

the document is calculated for each of its words and a user-
defined number k of the words with highest scores are pro-
posed as candidate tags. The target document is also as-
signed to a cluster within the cluster tree generated by the
clustering algorithm (see section on finding the document
neighbourhood) and the tags associated with the cluster are
also added to the candidate list of tags for the target doc-
ument. Note that some of these words may not appear in
the target document and are assigned to the document on
the basis of its similarity with other members of the same
cluster characterised by these words. The score assigned to
a tag is the average between the tf-idf scores on document
level (tfidf d) and cluster level (tfidf c).

wscore(word) =
tfidf d(word) + tfidf c(word)

2

FINDING PERSONALISED TAGS
The initial set of potential tags for the new document-user

pair (ua , docnew) consists of all tags assigned to documents
in the δ-neighbourhood of the new document by any user
(see section on finding document neighbourhood below). For
each of these tags, a weight is calculated which measures
the suitability of the tag based on the similarity scores of
the documents that are related to the tag and the similarity
scores of the users who assigned that tag. The set of users
that we are interested in consist of the users who assigned
tags to one or several documents in the neighbourhood of
the new document.

The t tags with the highest suitability value are finally
recommended to the active user. The formula for calculating
the suitability of each tag is as follows.

suit(ua, tag i) =
1

|posts tagi
|

X

i

dsim(docnew , doci)
β ·usim(ua, ub)

(1−β)

where |posts tagi
| is the number of posts for tag i, dsim and

usim are the document and user similarity measures (de-
scribed below) and β ≤ 1 is the weight given to document
similarity compared to user similarity.

If there are not enough tags in the resulting tag set with
a suitability score above a user-defined threshold, new tags
are generated as described in the section above.

Finding the Document Neighbourhood
As described previously the document clustering algorithm

results in a cluster hierarchy where each parent node has two
child nodes. To select a set of similar documents for a new
document from the cluster hierarchy, the tree is traversed
from the top down and the new document is assigned to one
of the two clusters at each branch split. Thus a path through
the tree is obtained for the new document in O(log nc) time.
From this path, the cluster with the highest cosine similar-
ity is assigned to the document as its cluster and the docu-
ments in the cluster added to the set of similar documents
Dsim. For each of the documents in Dsim, the similarity to
the new document dsim(docnew , doci) is calculated by cosine
similarity. If the document similarity is above a threshold

δ for each of the documents in Dsim, further documents are
added to Dsim by travelling up the tree from the cluster
and adding all documents in the clusters on the path until a
cluster containing a document with dsim(docnew , doci) < δ

is encountered.

User Similarity
The similarity between two users can be calculated in

three different ways.
The document set similarity considers how many docu-

ment are shared between the two users and is calculated
using the Jaccard co-efficient.

simD(ua, ub) =
|Da ∩ Db|

|Da ∪ Db|

where Da and Db are the document sets of the two users.
The vocabulary similarity measures the overlap in the two

users’ vocabulary sets and is given by

simV (ua, ub) =
|Va ∩ Vb|

|Va ∪ Vb|

where Va and Vb are the sets of tags used by the two users.
The tagging similarity considers whether the two users

assigned the same tags to the same documents and is calcu-
lated as follows.

simT (ua, ub) =
1

|Da ∪ Db|

|Tdia∩Tdib|
X

i=1

|Tdia ∩ Tdib|

|Tdia ∪ Tdib|

where Tdia and Tdib are the tag sets of the two users for
document i. The tagging similarity measure incorporates
document set similarity through the division by |Da ∪ Db|.
This ensures that the tagging similarity reflects not only the
documents for which two users have common tags but also
takes into account the number of documents for which the
two users do not have common tags.

The tagging similarity measure is the most valuable since
it takes into consideration both, document and tag sets and
the relationship between these, while the other two measures
focus on only one of these aspects. However, due to spar-
sity of the data the two users often do not have any shared
document-tag pairs which means the tagging similarity is
zero. Hence, the tagging similarity is combined with vocab-
ulary similarity which results in zero less frequently. A tag-
ging similarity of zero and a non-zero vocabulary similarity
indicates that the users share some tags but have assigned
them to different documents, thus the tags used by user ua

might be suitable for ub. The combined user similarity score
is given by

usim(ua, ub) = αsimT (ua, ub) + (1 − α)simV (ua, ub)

where α ≤ 1 specifies the weight given to the tagging simi-
larity compared to the vocabulary similarity.

EVALUATION
At the time of writing, the implementation of the sug-

gested system is not fully completed and an extensive evalu-
ation to determine the best thresholds and parameters still
has to be done. An initial evaluation was carried out on
a dataset from the social bookmarking website Bibsonomy.
The dataset consists of a variety of websites and academic
papers that were bookmarked on Bibsonomy and the tags
that were assigned to these documents by the users. The

-85-

post-core at level 5 was used so each user, document and
tag appeared at least five times in the data, resulting in
7538 posts (user, document pairs) containing 244 users, 953
documents and 811 tags. Similarly to [4], leave-one-out cross
validation was used to evaluate the algorithm. Each docu-
ment was represented using a vector space model, where the
dimensions were the 1000 words with largest document fre-
quency in the corpus. Five tags were recommended for each
test post and the performance measure was standard F1.
Since the test dataset contained only users and tags already
known to the system no new tags were generated.

The most significant parameters of our recommender sys-
tem are thresholds on document and user similarity. These
thresholds allow us to consider only documents and users
with a similarity score higher than the set value when calcu-
lating the scores for the potential tags. If we set the thresh-
old for document similarity to 1.0, only tags assigned to the
new document in other posts (by other users) are considered.
This is referred to as the set of popular tags in other systems
such as the current del.icio.us tag recommender. While in
other systems the score for each tag is given simply by the
number of posts it appears in, our system also weights each
post’s importance by considering the user similarity to the
active user, hence personalising the tag recommendation. If
we set the threshold for user similarity to 1.0, only the tags
from the active user’s other posts are considered. This is
referred to as the set of personal tags. For this scenario
each tag’s score is influenced by the similarity of the new
document to the documents in the user’s posts.

When tested on their own, the approach of popular tags
produced better recommendations (F1 of 0.25) than the per-
sonal tags (F1 of 0.13). However, the best results were
achieved through generating two sets of tags, one from each
approach and combining them to give a final recommenda-
tion set. The two sets were combined by a weighted sum of
the two scores for each tag in order to increase the overall
score of tags which appeared in both sets. The final tag
scores were then normalised. By recommending tags from
the combined set of popular and personal tags, the F1 was
increased to 0.35. The results of the combined approach
when recommending different sizes of tag sets is shown in
Figure 1 below. To additionally evaluate our method of
generating new tags, we set the threshold on the tag score
to 1.0 in another test run so that all recommended tags were
generated from the content of the documents. The resulting
F1 was 0.12 when generating five tags for each post.

1 2 3 4 5 6 7 8 9 10

number of recommended tags

0

0.1

0.2

0.3

0.4

0.5

0.6

precision

recall

F1

Figure 1: Results on Bibsonomy dataset at p-core 5

CONCLUSION AND FUTURE WORK
In this paper we suggested a novel approach to person-

alised tag recommendation. By creating a cluster tree of
documents we generate a topic hierarchy from general to
specialised, and determine the level of specialisation of a
new document. The recommended tags reflect the general-
ity of the new document. Through identifying a set of users
similar to the active user and measuring their similarity, we
are able to suggest personalised tags. If the required number
of tags cannot be found in the existing tag set, new tags are
generated from the vocabulary of the document corpus.

We plan to perform an extensive evaluation of the sug-
gested system on different datasets in order to find the best
values for the many parameters such as the weights given
to the different similarity measures and thresholds for tag
suitability. We will also evaluate our methods ability to ad-
dress the new-user/new-document/new-tag instantiation of
the new-item problem well known in Recommender liter-
ature. To further improve the tag recommender, we plan
to implement and evaluate different clustering and cluster
representation techniques such as those used by CURE [3].

In the future, we plan to investigate different approaches
to tag recommendation, taxonomy generation and dimen-
sionality reduction. Techniques for feature extraction such
as finding synonym sets and topic models for documents are
very interesting and have the potential increase the perfor-
mance of any tag recommendation or classification system.

REFERENCES
[1] P. S. Bradley and U. M. Fayyad. Refining initial points

for K-Means clustering. In Proc. 15th International
Conf. on Machine Learning, pages 91–99, 1998.

[2] J. Gemmell, T. Schimoler, M. Ramezani, and
B. Mobasher. Adapting k-nearest neighbor for tag
recommendation in folksonomies. In Proc. 7th
Workshop on Intelligent Techniques for Web
Personalization and Recommender Systems, 2009.

[3] S. Guha, R. Rastogi, and K. Shim. CURE: An efficient
clustering algorithm for large databases. In Proc. 1998
ACM SIGMOD International Conference on
Management of Data, pages 73–84, 1998.

[4] R. Jaeschke, L. B. Marinho, A. Hotho,
L. Schmidt-Thieme, and G. Stumme. Tag
recommendations in folksonomies. In Proc. 11th
European Conference on Principles and Practice of
Knowledge Discovery in Databases, 2007.

[5] Y. Song, Z. Zhuang, H. Li, Q. Zhao, J. Li, W.-C. Lee,
and C. L. Giles. Real-time automatic tag
recommendation. In Proc. 31st international ACM
SIGIR conference on Research and development in
information retrieval, pages 515–522, 2008.

[6] M. Steinbach, G. Karypis, and V. Kumar. A
comparison of document clustering techniques.
Technical Report 00-034, University of Minnesota, 2000.

[7] Y. Yang and J. O. Pedersen. A comparative study on
feature selection in text categorization. In Proc.
ICML-97, 14th International Conference on Machine
Learning, pages 412–420, 1997.

[8] T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH:
An efficient data clustering method for very large
databases. In Proc. ACM SIGMOD ’96: Int. Conf. on
Management of Data, pages 103–114, 1996.

-86-

A hybrid PLSA approach for warmer cold start
in folksonomy recommendation

Alan Said Robert Wetzker Winfried Umbrath Leonhard Hennig

DAI Labor

Technische Universität Berlin

{alan.said, robert.wetzker, winfried.umbrath, leonhard.hennig}@dai-labor.de

ABSTRACT
We investigate the problem of item recommendation during
the first months of the collaborative tagging community Ci­
teULike. CiteULike is a so-called folksonomy where users
have the possibility to organize publications through anno­
tations - tags. Making reliable recommendations during the
initial phase of a folksonomy is a difficult task, since infor­
mation about user preferences is meager. In order to im­
prove recommendation results during this cold start period,
we present a probabilistic approach to item recommenda­
tion. Our model extends previously proposed models such
as probabilistic latent semantic analysis (PLSA) by merging
both user-item as well as item-tag observations into a unified
representation. We find that bringing tags into play reduces
the risk of overfitting and increases overall recommendation
quality. Experiments show that our approach outperforms
other types of recommenders.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Information
Search and Retrieval

Keywords
recommendations, folksonomies, CiteULike, cold start,
PLSA

1. INTRODUCTION
Recommender systems have become an integral part of

almost every Web 2.0 site, allowing users to easily discover
relevant content. Many social tagging communities, such as
CiteULike1 , Delicious2 and Bibsonomy3, use recommenda­
tion techniques as part of their service. These communities,

1http://www.citeulike.org/
2http://delicious.com/
3http://www.bibsonomy.org/

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Recommender Systems ’09 New York, New York USA
Copyright 2009 ACM X-XXXXX-XX-X/XX/XX ...$10.00.

generally referred to as folksonomies, give users the possi­
bility to annotate items with freely chosen keywords (tags)
for easier content retrieval at later points in time [14]. Most
of these folksonomy systems recommend suitable tags when
a user tags a new item.

In this paper we consider a problem all new folksonomy
websites and services offering recommendations encounter –
the cold start phase, during which recommendations have
to be made based on very little historical data. During
this phase, the similarities between items are hard to calcu­
late as the user-item graph is sparsely, if at all, connected.
However, when turning to tags, we find a higher connectiv­
ity. Our objective is to increase the quality of item recom­
mendations during this cold start phase by utilizing item-
tag co-occurrences in conjunction with their user-item co­
occurrence counterparts. By doing so, we improve standard
collaborative filtering models by considering user-given an­
notations, i.e. tags.

Probabilistic latent semantic analysis (PLSA), as intro­
duced by Hofmann in [8], is known for improving recom­
mendation quality in different settings [1]. PLSA assumes a
lower dimensional latent topic distribution of the observed
co-occurrences. These latent distributions group similar
items together. We use an extended model of the hybrid
PLSA recommender described in [15]. Our recommender
derives the latent topic distribution from user-item and item­
tag co-occurrences in parallel. Furthermore we extend this
model to cope with known issues related to overfitting.

We perform our evaluation on a subset of the CiteU-
Like dataset. CiteULike is a service allowing users to
share, organize and store scholarly papers by assigning tags.
Daily snapshots of the CiteULike dataset are made available
through the official website4 . Since we are only interested in
the startup period of recommendation systems we carry out
our experiments on the first 12 months of the available data,
starting on day one - when the first document was tagged
on November 4, 2004. For comparison we also present how
our model performs after 24 months, which corresponds to
a point in time when CiteULike had become an established
service. Our results clearly show that our Hybrid PLSA
(HyPLSA) model produces higher quality recommendations
during the cold start period compared to other models. Ad­
ditionally we find that our approach performs well when the
dataset has grown significantly in size, although these im­
provements are not as significant as the ones during the cold
start period though.

4http://www.citeulike.org/faq/data.adp

-87-

jannach
Rechteck

�

�

� �
�

�
�

�

�

�

�

1.1 Related Work
Recommender systems can be divided into three main cat­

egories; collaborative filtering-based, content-based, and so­
called hybrid systems which combine both. Collaborative fil­
tering approaches base their recommendations solely on co­
occurrence observations between users and items. Content-
based ones, as the name suggests, derive their similarities
based on content, i.e. term distributions etc. Hybrid sys­
tems utilize data from both of these models. In folksonomies
tags tend to reflect the content of the tagged item [2], thus
even if we do not consider the actual item content itself,
we group tag-based recommender system together with the
content-based ones.

The authors of [15] present a hybrid approach to item rec­
ommendation in collaborative tagging communities based on
PLSA in which they exploit tags to improve recommenda­
tions on very large datasets.

Since the introduction of PLSA by Hoffman in [8] it has
shown to perform very well in a wide area of topics, among
others it continues to outperform multiple other recommen­
dation and decomposition algorithms [1,16]. A drawback of
PLSA is that it does not necessary converge to the global
optimum [5]. One way to overcome any effects that may
arise from this is presented in [3, 6] where the authors show
that multiple training cycles for the same test/train splits
provide for more robust results.

Past research within the context of recommendation in
folksonomies has, until recently, been focused on tag rec-
ommendation [7, 13]. We apply our extended HyPLSA ap­
proach on the task of item recommendation instead.

Another successful approach to recommendation within
folksonomies is the FolkRank algorithm introduced by the
authors of [10], we use this algorithm as a comparison to our
approach.

The remainder of this paper is structured as follows. In
Section 2 we present the algorithms utilized in our exper­
iments followed by a description of our tests, dataset and
experimental setup in Section 3. We present our results in
Section 4 and draw final conclusions in Section 5.

2. ALGORITHMS
In the following section we describe our HyPLSA approach

which is an extended version of the one presented by the
authors of [15].

2.1 Model fusion using PLSA – HyPLSA
Hotho et al. [9] describe a folksonomy as tripartite graph

in which the vertex set is partitioned into three disjoint sets
of users U = {u1, ..., ul}, tags T = {t1, ..., tn} and items I =
{i1, ..., im}. In [15] Wetzker et al. simplify this model into
two bi-partite models; the collaborative filtering model IU

built from the item user co-occurrence counts f(i, u), and the
annotation-based model IT analogously derived from the co­
occurrence total between items and tags f(i, t). In the case
of social bookmarking IU becomes a binary matrix (f(i, u) ∈
{0, 1}) since each user can bookmark a given web resource
one time only. Given this model, we want to recommend
the most interesting new items from I to user ul given his
or her item history.

The PLSA aspect model associates the co-occurrence of
observations with a hidden topic variable Z = {z1, . . . , zk}.
In the context of collaborative filtering, an observation cor­

responds to the bookmarking of an item by a user and all ob­
servations are given by the co-occurrence matrix IU . Users
and items are assumed independent given the topic variable
Z. When applying the aspect model, the probability of an
item that has been bookmarked by a given user can be com­
puted by summing over all latent variables Z:

P (im|ul) = P (im|zk)P (zk|ul) (1)
k

For the annotation-based scenario we assume the set of hid­
den topics to be the same as in the item tag co-occurrence
observations given by IT . In compliance with (1), the con­
ditional probability between tags and items can be written
as:

P (im|tn) = P (im|zk)P (zk|tn). (2)
k

Following the procedure in [4], we can now merge both mod­
els based on the common factor P (im|zk) by maximizing the
log-likelihood function:

L = α f(im, ul) log P (im|ul)
m l

+(1 − α) f(im, tn) log P (im|tn) , (3)
n

where α is a predefined weight for the leverage of each two­
mode model. Using the expectation-maximization (EM) al­
gorithm [4] we subsequently perform maximum likelihood
parameter estimation for the aspect model. During the ex­
pectation (E) step we begin with calculating the posterior
probabilities:

P (im|zk)P (zk|ul)
P (zk|ul, im) =

P (im|ul)

P (im|zk)P (zk |tn)
P (zk|tn, im) = ,

P (im|tn)

and then re-estimate parameters in the maximization (M)
step according to:

P (zk|ul) ∝ f(ul, im)P (zk|ul, im) (4)
m

P (zk|tn) ∝ f(tn, im)P (zk|tn, im) (5)
m

P (im|zk) ∝ α f(ul, im)P (zk|ul, im)

l

+(1 − α) f(tn, im)P (zk|tn, im) (6)
n

Based on the iterative computation of the above E and M
steps, the EM algorithm monotonically increases the likeli­
hood of the combined model on the observed data. Using
the α parameter, our new model can easily be reduced to
a collaborative filtering, or annotation-based model, simply
by setting α to 1.0 or 0.0 respectively.

Because of the random initialization of the EM algorithm
utilized by PLSA, we employ an averaging approach to re­
duce any effects possibly caused by local maximum optimiza­
tions. Thus, following Equation (1), we repeat Equations (4)
to (6) n times for every recommendation and average the
probabilities obtained from Equation (1). Our contribution

-88-

�

598

to the model is presented in Equation (7), where the final,
averaged, probability is given.

Pn(im|ul)
P̄ (im|ul) = n (7)

n

We can now recommend items to a user ul weighted by
the probability P (im|ul) from Equation (7). For items al­
ready bookmarked by the user in the training data we set
this weight to 0, thus they are appended to the end of the
recommended item list.

3. EXPERIMENTS
We conduct our experiments on the CiteULike dataset,

these experiments are described next.

3.1 Dataset
The CiteULike bookmarking service provides daily snap­

shots of their data for research purposes. At the time of
writing the overall dataset consisted of roughly 53 months
of data. As noted earlier we are only interested in the initial
phase of the service and therefore limit our analysis to the
first 24 months, focusing on the first 12.

CiteULike was chosen as the experimental dataset because
it is a well known real-world folksonomy and has been ex­

3.2 Experimental setup
To create test and training sets for our algorithms, we

split each monthly snapshot in two. For all users who had
bookmarked at least 5 items in the current snapshot, we se­
lected 80% of their items as the training set. The remaining
items were consequently used for testing. We then trained
all recommender types on the training sets and evaluated
their performance on the test sets. The relatively small size
of the dataset allowed us to optimize parameters through a
brute force approach. Evaluation measures were averaged
over all users in 10 independent test runs.

4. RESULTS
We evaluate the performance of each recommender with

the well known and widely used precision at 10 measure
(Prec@10). Other evaluation measures, such as mean aver­
age precision (MAP), area under curve (AUC)and F1 score
(F1), showed similar results.

0.07 //

0.04

0.05

0.06 PLSA3 K=80 α=0.1

PLSA3 K=80 α=0.0

PLSA3 K=10 α=1.0

MP

FR

p@
10

perimented on by numerous others [11,12,17].
We started by removing all users who had bookmarked

less than 20 items as well as items and tags that occurred
only once. We then created monthly snapshots where each of
the snapshots accumulated all previous tagging events. By
doing this we were able to simulate a growing folksonomy
over time.

Figures 1(a), 1(c), 1(b) and 2 show some characteristics
of our dataset.

10
3

 10
3

 10
3

users users users

10
2

tags
10

2
tags

10
2

tags

of

 it
em

s

of

 it
em

s

of

 it
em

s

0.03

0.02

0.01

0 //0 3 6 9 12 24
months

Figure 3: Prec@10 values for the item recommen­

dation task on the CiteULike dataset plotted per

month. The number of latent topics (k) is set to 80
for the purely annotation-based PLSA recommender

(α = 0.0) and to 10 for the purely collaborative ver­
10

1
10

1
10

1 sion (α = 1.0). The MP and FR lines represents

the performances of a most-popular baseline classi­10
0
 10

0
 10

0

0 1 2 3 0 2 4 0 2 4
10 10 10 10 10 10 10 10 10 10

of users # of users # of users

of tags # of tags # of tags
 fier and the FolkRank recommender presented by

Hotho et al. [10]. The results of the combined Hy-

PLSA approach are seen in the topmost line, the

parameters α and k where set to 0.1 and 80 respec­

(a) at 3 months. (b) at 12 months. (c) at 24 months.

Figure 1: Users and tags plotted against the number
tively.

of items they are connected to.

Figure 3 shows the Prec@10 values for the HyPLSA
//
 10

6

recommender obtained with an optimal parameter setting
(alpha = 0.1, k = 80), the purely collaborative filtering­

280315

6434410
5

based PLSA recommender (α = 1, k = 10), the purely 401953423219670
2519421841

13589

17682 1864715833 annotation-based PLSA recommender (alpha = 0, k = 80), 339891370111813102099607

4 82745495 634810 11816 the baseline most-popular recommender and the FolkRank 10259 4635
77634601 89123424

676155382685 recommender. The figure shows a significant improvement # 42281737 36241699 3112 320530092415 2589 27751743 2167 when using the HyPLSA recommender, especially in the 1884846 1571112610
3

130311261071 1004651 891767747 648 early months of the CiteULike. We also see that as the 536256 483 users416
234 tags dataset grows, and the number of possible items to recom­

items
225 244

16310
2

115

tag assignments
bookmarks34

0
10

1

1 2 3 4 5 6 7 8 9 10 11 12
//

24
months

Figure 2: Accumulated number of items, tags, users,

tag assignments and bookmarks of our data per

month

mend increases, the precision values decrease. Nevertheless,
the HyPLSA approach delivers significantly better results
than the other evaluated approaches.

Figure 4 shows a figure similar to Figure 3, this time with
Prec@10 values plotted against the number of items in the
dataset, confirming the observation made earlier.

In Figure 5 we present the relative improvements in pre­
cision of the HyPLSA approach plotted against the other

-89-

ones explored in this paper. The reason for these results

0 5000 10000 33989
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

//

//

p@
10

PLSA3 K=80 α=0.1
PLSA3 K=80 α=0.0
PLSA3 K=10 α=1.0
MP
FR

items

Figure 4: Prec@10 values for the same scenario and

value as in Figure 3 plotted against the number of

items in the dataset.

can be traced back to Figure 1(a) where we clearly see the
differences in density in the user domain when comparing
Figure 1(a) to Figures 1(b) and 1(c). At best our approach
improves precision values roughly tenfold compared to the
baseline MP recommender and twice as well as the FR rec­
ommender. As expected the improvement is highest in the
first couple of months and slowly decreases (for MP and FR)
or stabilizes (for CF) as the dataset grows. Comparing to
the tag-based approach, the improvement is not as distinct
as in the case with other recommenders. Relative improve­
ments are in the order of 2−25% during first seven months,
decreasing in the long run.

These results confirm the notion that, for a small dataset,
the number of user-item co-occurrences is too low to allow
a collaborative filtering recommender to make good predic­
tions. Tags and tag-item co-occurrences, on the other hand,
provide higher item-item similarities as tags are more abun­
dant and contain contextual information about the items.
Therefore tags provide for recommendations on a finer level
of granularity.

−3

10
−2

10
−1

10
0

10
1

re
la

tiv
e

im
pr

ov
em

en
t

improvement to MP
improvement to pure CF
improvement to tag based
improvement to FR

//

//
1 2 3 4 5 6 7 8 9 10 11 12 24

10

month

Figure 5: The relative improvement of the proposed

HyPLSA recommender compared to the other ex­

plored ones. The higher the line, the bigger the

improvement.

5. CONCLUSIONS
We have shown that tags improve the quality of item rec­

ommendation during the cold start period of a folksonomy.
This is due to the fact that tags offer denser, more detailed
item information than usage patterns do.

Furthermore we have presented a hybrid probabilistic ap­
proach that combines user and tag similarities in order to
boost recommendation quality. The recommendation qual­
ity improvement created by using this approach peaks dur­
ing the cold start period, although the approach continues

to provide for better recommendations as the size of dataset
increases. We believe that the reason for the relative im­
provement being higher in the beginning can be traced back
to the pattern seen in Figures 1(a) to 1(c) where we initially
see a very much higher density in tag usage compared to
usage patterns. As the tag usage pattern density becomes
more and more similar to the tag density the recommenda­
tion results of all PLSA (tag, CF and HyPLSA) approaches
become similar.

6. REFERENCES
[1] J. Arenas-Garćıa, A. Meng, K. B. Petersen, T. L.

Schiøler, L. K. Hansen, and J. Larsen, ‘Unveiling
music structure via PLSA similarity fusion’, in Proc.
of MLSP’07, (2007).

[2] K. Bischoff, C. S. Firan, W. Nejdl, and R. Paiu, ‘Can
all tags be used for search?’, in CIKM ’08, (2008).

[3] T. Brants, F. Chen, and I. Tsochantaridis,

‘Topic-based document segmentation with

probabilistic latent semantic analysis’, in Proc. of

CIKM ’02, (2002).

[4] D. A. Cohn and T. Hofmann, ‘The missing link - a
probabilistic model of document content and
hypertext connectivity’, in NIPS, pp. 430–436, (2000).

[5] A. P. Dempster, N. M. Laird, and D. B. Rubin,
‘Maximum likelihood from incomplete data via the em
algorithm’, Journal of the RSS. Series B, 39, (1977).

[6] L. Hennig, ‘Topic-based multi-document

summarization with probabilistic latent semantic

analysis’, in RANLP ’09, (Sep. 2009).

[7] P. Heymann, D. Ramage, and H. Garcia-Molina,
‘Social tag prediction’, in Proc. of SIGIR ’08, (2008).

[8] T. Hofmann, ‘Probabilistic latent semantic analysis’,
in Proc. of UAI ’99, (1999).

[9] A. Hotho, R. Jäschke, C. Schmitz, and G. Stumme,
‘Information retrieval in folksonomies: Search and
ranking’, in ESWC, pp. 411–426, (2006).

[10] A. Hotho, R. Jäschke, C. Schmitz, and G. Stumme,
‘FolkRank: a ranking algorithm for folksonomies’, in
Proc. FGIR 2006, (2006).

[11] S. Noël and R. Beale, ‘Sharing vocabularies: tag usage
in citeulike’, in Proc. of BCS-HCI ’08, (2008).

[12] S. Oldenburg, M. Garbe, and C. Cap, ‘Similarity
cross-analysis of tag / co-tag spaces in social
classification systems’, in Proc. of SSM ’08, (2008).

[13] P. Symeonidis, A. Nanopoulos, and Y. Manolopoulos,
‘Tag recommendations based on tensor dimensionality
reduction’, in Proc. of RecSys ’08, pp. 43–50, (2008).

[14] T. Vander Wal. Folksonomy coinage and definition.
http://www.vanderwal.net/folksonomy.html

(retrieved on June 10, 2009), February 2007.

[15] R. Wetzker, W. Umbrath, and A. Said, ‘A hybrid
approach to item recommendation in folksonomies’, in
Proc. of WSDM - ESAIR ’09, pp. 25–29, (2009).

[16] G.-R. Xue, W. Dai, Q. Yang, and Y. Yu,
‘Topic-bridged plsa for cross-domain text
classification’, in Proc. of SIGIR ’08, (2008).

[17] V. Zanardi and L. Capra, ‘Social ranking: uncovering
relevant content using tag-based recommender
systems’, in Proc. of RecSys ’08, pp. 51–58, (2008).

-90-

Cobot: Real Time Multi User Conversational Search and
Recommendations

Saurav Sahay
College of Computing

Georgia Tech
ssahay@cc.gatech.edu

Anushree Venkatesh
College of Computing

Georgia Tech
avenkatesh6@gatech.edu

Ashwin Ram
College of Computing

Georgia Tech
ashwin@cc.gatech.edu

ABSTRACT
Cobot is a new intelligent agent platform that connects users
through real-time and off-line conversations about their health
and medical issues. Intelligent web based information agents
(conversational/community bots) participate in each conver-
sation providing highly-relevant real-time informational rec-
ommendations and connecting people with relevant conver-
sations and other community members. Cobot provides an
innovative approach to facilitate easier information access al-
lowing users to exchange information through a natural lan-
guage conversational approach. Conversational Search(CS)
is an interactive and collaborative information finding in-
teraction. The participants in this interaction engage in
social conversations aided with an intelligent information
agent (Cobot) that provides contextually relevant factual,
web search and social search recommendations. Cobot aims
to help users make faster and more informed search and dis-
covery. It also helps the agent learn about conversations
with interactions and social feedback to make better recom-
mendations. Cobot leverages the social discovery process by
integrating web information retrieval along with the social
interactions and recommendations.

Categories and Subject Descriptors
H.5.0 [Information Systems Applications]: General; H.3.3
[Information Storage and Retrieval]: Information Search
and Retrieval; I.2.7 [Artificial Intelligence]: Natural Lan-
guage Processing

General Terms
Design, Human Factors, Algorithms

Keywords
Real time Collaborative Information Access, Social Search,
Contextual Collaborative Filtering, Conversational Search

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

This paper introduces a novel Conversational Search and
Recommendation system that involves finding relevant in-
formation based on social interactions and feedback along
with augmented agent based recommendations. People in
social groups can provide solutions (answers to questions)[3],
pointers to databases or other people (meta-knowledge)[3][6],
validation and legitimation of ideas[3][4], can serve as mem-
ory aids[7] and help with problem reformulation[3]. “Guided
participation”[11] is a process in which people co-construct
knowledge in concert with peers in their community[12]. In-
formation seeking is mostly a solitary activity on the web
today. Some recent work on collaborative search reports
several interesting findings and the potential of this technol-
ogy for better information access.[5][2][1][9]

We are building a system called Cobot1 to address some
of these challenges. Cobot introduces a conversational envi-
ronment that provides social search through conversations
integrated with intelligent semantic meta-search from the
web. Users want to simplify their experience when perform-
ing an information finding task. Conversational Search is
about letting users collaboratively search and find in natu-
ral language, leaving the task of user intent comprehension
on the system. The participating agent interacts with users
proving recommendations that the users can accept, reject,
like, dislike or suggest.

2. SYSTEM DESCRIPTION
Cobot is an intelligent agent platform that connects users

through real-time and offline conversations. Cobot lives
in a community, has a limited understanding of domains
through ontologies and brings relevant information to the
users by participating in the conversations. Cobot’s ’conver-
sation engine’ monitors user conversations with other users
in the community and provides/receives recommendations
(links and snippets) based on the conversation to the par-
ticipants. Cobot’s ‘community engine’ models conversations
to capture user-user and user-information interactions.

Design Goals

1. Near real time conversational agent

2. Personalized as well as generic recommendations

3. Agent learns with interaction

4. Uses a structured internal organization of content

1We use the term Cobot for Cobot system as well as Cobot
agent interchangeably

-91-

jannach
Rechteck

5. Dynamically connects conversations to the right set of
people for participation

6. Helps the user talk about health issues. (Real time
conversations)

7. In the real time conversational process, provides rec-
ommendations. (‘who to talk to’, ‘what to look at’)

In the following sections, we briefly describe the features
of the Cobot system.

2.1 Real time Conversational Search
Cobot provides a conversational interface that combines

semantic language understanding and real time collabora-
tive environment for information retrieval with contextually
relevant recommendations. Cobot helps people find infor-
mation faster with the aim for finding useful responses for
completing the search intent. The conversational interface
allows for much more interactivity than one-shot search style
interfaces, which aids usability and improves intent under-
standing. For example, Cobot recommends links and snip-
pets from relevant articles on the internet. It also makes so-
cial recommendations to connect contextually relevant users
to the conversation.

The approach we have taken to address CS problems is
by developing dynamic data structures that model it. We
call this structure the “Socio-Semantic Model” - these con-
versation nets maintain in memory models of the conver-
sation, participants, participants’ immediate social connec-
tions, concepts, relationships and information flow.

2.2 Socio-Semantic Model
The Socio-Semantic Conversation Model is a dynamic mem-

ory data structure based on principles of experience based
agent architecture.[10] It supports interleaved retrieval of
information by applying different memory retrieval algo-
rithms. The model maintains the user’s social graph, the
conversation graph with the extracted semantic net for the
conversation.

Some essential properties of the model are as follows:

• The model is socially aware of the participant and
his social network’s availability (to aid with Cohort
Matching)

• The model provides bi-directional recommendation and
feedback. (Both agent and the participant can add rec-
ommendations)

• The model understands limited domain terminology
and is able to find semantic relationships amongst con-
cepts extracted from conversations.

• The model is aware of user’s profile (such as interests
and ratings) for the agent to be able to use that infor-
mation.

The Socio-Semantic Model aims to provide storage and
memory based retrieval for dynamic representation, update
and reuse of users’ knowledge and experiences. Figure 1
depicts the user-centric domain information modeling ap-
proach to jointly model the information context from users’
perspective.

2.3 Aggregated Web Search
Identifying relevant documents for a particular user’s need

without extensive search, in conversational manner is the
key objective for precise search. The right search queries
need to be figured out with situation assessment from the
conversational snippets. It is not desirable to return dozens
or hundreds of remotely relevant results, even if some of
them will be highly relevant. The aim is to retrieve succes-
sive recommendations that try to address the search prob-
lem precisely. Cobot uses different shallow semantic parsing
techniques for operationalizing a user’s intent into computa-
tional form, dispatching to multiple, heterogeneous services,
gathering and integrating results, and presenting them back
to the user as a set of solutions to their request.

2.4 Real time matching of participants to con-
versations

Communities are made up of users who are grouped by
different information needs into dynamic cohorts. These on-
line communities, through effective sharing and collabora-
tion, increase the utility of systems and help solve individ-
ual problems more effectively. Cobot allows for connecting
two or more individuals to an online conversation based on
the topic and context of conversation, mutual interests, and
what they want to talk about at that time. The system
allows any individual to find/join that conversation.

2.5 Socio-Semantic Collaborative Filtering
Filtering and recommendation are crucial in collaborative

systems enabling users to navigate an ever-growing deluge
of information more effectively. Cobot’s recommendation
engine delivers quality information delivered through filters
achieved from semantic and contextual understanding of
text along with captured users’ interests. It uses various
personalization techniques such as collaborative filtering on
conversations and other entities in context. Natural lan-
guage processing techniques are used to enhance the content
based recommendations.[8]

3. SYSTEM ARCHITECTURE
Figure 2 depicts the high level architecture of the Cobot

system. The Conversational Agent uses different modules
for conversation analysis, search and recommendation and
maintains a short-term conversation memory for each con-
versation. The socio-semantic model/net is analogous to
the agent’s long term memory model where it stores all pro-
cessed information about users, conversations, activities and
content descriptors.

4. SYSTEM PROTOTYPE
Figure 3 shows one screenshot of the initial system proto-

type which is work in progress. This prototype is designed
for health related searches by incorporating medical ontolo-
gies. Users actively engage in conversations by multi-user
chat, rating or adding recommendations. The agent moni-
tors the environment to build user interaction models and
to improve search relevance.

5. CONCLUSION
This paper proposes a collaborative system for conversa-

tional search and recommendations. We are hypothesizing

-92-

Figure 1: Socio-Semantic Net

Figure 2: System Architecture

-93-

Figure 3: Prototype Interface
that such a Conversational Search system is more usable
for information access as compared to a solitary web search
experience. We briefly describe the design goals and fea-
tures involved in construction of the Cobot system. Socio-
Semantic Conversation Modeling using Experience-based Agency
is a unified approach for addressing Conversational Search
problem. The dynamic and self configuring memory struc-
tures and the semantic net details enable memory retrieval
from the storage. Automatic Cohort Matching based on
Conversations and User Profiles incorporate a methodology
to dynamically pull users for conversations. Unlike users
themselves having to find relevant conversations, the con-
versations find the users using this approach.

6. REFERENCES
[1] S. Amershi and M. R. Morris. Cosearch: a system for

co-located collaborative web search. In CHI ’08:
Proceeding of the twenty-sixth annual SIGCHI
conference on Human factors in computing systems,
pages 1647–1656, New York, NY, USA, 2008. ACM.

[2] O. Boydell and B. Smyth. Enhancing case-based,
collaborative web search. Lecture Notes in Computer
Science, 4626:329, 2007.

[3] R. Cross, R. E. Rice, and A. Parker. Information
seeking in social context: structural influences and
receipt of information benefits. IEEE Transactions on
Systems, Man, and Cybernetics, Part C,
31(4):438–448, 2001.

[4] B. M. Evans and E. H. Chi. Towards a model of
understanding social search. In CSCW ’08:
Proceedings of the ACM 2008 conference on Computer
supported cooperative work, pages 485–494, New York,
NY, USA, 2008. ACM.

[5] D. Feng, E. Shaw, J. Kim, and E. Hovy. An intelligent
discussion-bot for answering student queries in
threaded discussions. In Proceedings of the 11th

international conference on Intelligent user interfaces,
pages 171–177. ACM New York, NY, USA, 2006.

[6] E. A. Fox, D. Hix, L. T. Nowell, D. J. Brueni, D. Rao,
W. C. Wake, and L. S. Heath. Users, user interfaces,
and objects: Envision, a digital library. J. Am. Soc.
Inf. Sci., 44(8):480–491, 1993.

[7] I. Karasavvidis. Distributed Cognition and
Educational Practice. Journal of Interactive Learning
Research, pages 11–29, 2002.

[8] P. Melville, R. Mooney, and R. Nagarajan.
Content-boosted collaborative filtering for improved
recommendations. In Proceedings of the National
Conference on Artificial Intelligence, pages 187–192.
Menlo Park, CA; Cambridge, MA; London; AAAI
Press; MIT Press; 1999, 2002.

[9] S. Paul and M. Morris. Cosense: enhancing
sensemaking for collaborative web search. In
Proceedings of the 27th international conference on
Human factors in computing systems, pages
1771–1780. ACM New York, NY, USA, 2009.

[10] A. Ram and A. Francis. Multi-plan retrieval and
adaptation in an experience-based agent. Case-Based
Reasoning: experiences, lessons, and future directions,
pages 167–184, 1996.

[11] B. Rogoff. Apprenticeship in thinking: Cognitive
development in social context. Oxford University Press
New York, 1990.

[12] B. Wilson and H. Meij. Constructivist learning
environments: Case studies in instructional design.
IEEE Transactions on Professional Communication,
pages 0361–1434, 1997.

[13] O. Ybarra, E. Burnstein, P. Winkielman, M. C.
Keller, M. Manis, E. Chan, and J. Rodriguez. Mental
Exercising Through Simple Socializing: Social
Interaction Promotes General Cognitive Functioning.
Pers Soc Psychol Bull, 34(2):248–259, 2008.

-94-

	Papers.pdf
	02 Bogers.pdf
	1 Introduction
	2 Methodology
	2.1 Data Sets
	2.1.1 Data set filtering

	2.2 Experimental Setup & Evaluation

	3 Folksonomic Recommendation
	3.1 Baseline Recommendation Algorithms
	3.2 Tag Overlap Similarity
	3.3 Results & Discussion

	4 Recommendation using Metadata
	4.1 Content-based Filtering
	4.2 Hybrid Filtering
	4.3 Results & Discussion

	5 Related Work
	5.1 Folksonomic Recommendation
	5.2 Exploiting Metadata for Recommendation

	6 Conclusions
	7 References

	08 Troussov.pdf
	3. THE ALGORITHM

