
Enumeration of valid partial configurations

Alexey Voronov, Knut Åkesson, Fredrik Ekstedt
Chalmers University of Technology, Göteborg, Sweden

{voronov, knut}@chalmers.se
Fraunhofer-Chalmers Research Centre for Industrial Mathematics, Göteborg, Sweden

fredrik.ekstedt@fcc.chalmers.se

Abstract

Models of configurable products can have hundreds
of variables and thousands of configuration con-
straints. A product engineer usually has a limited
responsibility area, and thus is interested in only
a small subset of the variables that are relevant to
the responsibility area. It is important for the en-
gineer to have an overview of possible products
with respect to the responsibility area, with all ir-
relevant information omitted. Configurations with
some variables omitted we will call partial config-
urations, and we will call a partial configuration
valid if it can be extended to a complete configura-
tion satisfying all configuration constraints. In this
paper we consider exact ways to compute valid par-
tial configurations: we present two new algorithms
based on Boolean satisfiability solvers, as well as
ways to use knowledge compilation methods (Bi-
nary Decision Diagrams and Decomposable Nega-
tion Normal Form) to compute valid partial config-
urations. We also show that the proposed methods
are feasible on configuration data from two auto-
motive companies.

1 Introduction
Within the automotive industry it is common to have a few
general platforms where each platform are highly config-
urable to adapt to the needs on different markets but also to
satisfy the needs of individual customers. Having highly con-
figurable products put high demands on the engineering sys-
tems to support the engineers during the development of the
platforms. While having a configurable product or platform it
is inevitable to also have constraints that specify what can be
allowed together and what is not allowed together. These con-
straints can, in many situations, be defined as a set of Boolean
formulas defined over finite domain variables.

Development of complex products—like in the automo-
tive industry—is done in large teams, where each engineer
is working with only a limited part of the product. For the
individual engineer only a small subset of the variables from
those that describe the full product, are of immediate inter-
est. However, an important problem for the engineer is to

know which combinations of variable assignments for a sub-
set of the variables might result in a product that satisfies all
constraints, that is to know valid partial configurations. This
is important because it helps the engineer to develop solu-
tions only for those combinations that can actually be built
and sold. Overestimation of these solutions will lead to engi-
neer doing unnecessary designs. Underestimation can lead to
costly delays if an overlooked configuration is requested by a
customer afterwards.

Computing the exact set of valid partial configurations is
generally hard. Simply taking configurations of the complete
products and projecting them on relevant variables is not fea-
sible, as practical problems can have 10120 and more build-
able complete products.

One of the ways to get exact set of valid partial configura-
tions is to existentially quantify all irrelevant variables from
the formula that represents the conjunction of all configura-
tion constraints, for example using resolution inference rule
[Robinson, 1965; Davis and Putnam, 1960], and then use a
standard algorithm to enumerate all (complete) assignments
of the new simplified formula. A simple enumeration of com-
plete assignments searches for a satisfying assignment, adds it
to the result, and also adds it to the current set of constraints as
a blocking constraint, forbidding future search from returning
it again. The disadvantage of this approach is that the formula
size can grow significantly after quantification. In this paper
we present a modification of this enumeration algorithm that
does not require existential quantification of variables to enu-
merate partial configurations (Section 4.1). Similar algorithm
can be found in [Gebser et al., 2009].

The problem of partial configurations can also be tackled
by the widely used interactive configurators. In an interac-
tive configurator a user selects values for variables one by
one. The configurator should guide the user so that at any
point there exist at least one way to complete the configura-
tion without changing any of the earlier decisions, in this case
a configurator is backtrack-free. Configurator should also be
complete meaning that if a configuration is allowed accord-
ing to the constraints, configurator should allow it. Having
such complete and backtrack-free configurator, it is possible
to automatically check all (partial) assignments of values to
the relevant variables, and the configurator will show which
of them are valid. If a configurator is not backtrack-free, it
can overestimate allowed partial configurations. If it is not

complete, it will underestimate them.
Previous work on methods for building interactive con-

figurators started as extensions of Constraint Satisfaction
Problem (CSP) with conditional and dynamic formulations
[Dechter and Dechter, 1988; Mittal and Falkenhainer, 1990;
Soininen and Gelle, 1999; Sabin and Freuder, 1998; Gott-
lob et al., 2007]. However, supported implementations of
these algorithms are not readily available. Binary Decision
Diagrams (BDDs) [Bryant, 1986] is a knowledge compi-
lation method [Darwiche and Marquis, 2002] successfully
used for configuration [Hadzic et al., 2004], especially for
real-time interactive configuration. However, BDDs suffer
from memory explosion for many datasets of practical size.
Other knowledge compilation methods used for configuration
include automata representation [Amilhastre et al., 2002],
Tree-of-BDDs [Subbarayan, 2005], Joint Matched CSP [Sub-
barayan and Andersen, 2005], Decomposable Negation Nor-
mal Form (DNNF) [Darwiche and Marquis, 2002] (espe-
cially Deterministic DNNF for model counting [Kübler et
al., 2010]), as well as combinations of search and BDDs
[Norgaard et al., 2009]. Recently, Boolean Satisfiability
Solvers (SAT-solvers) emerged as an alternative to work with
configurations [Sinz et al., 2003; Küchlin and Sinz, 2000;
Sinz et al., 2006; Janota, 2008], including interactive con-
figurators [Janota, 2010].

In this paper we show how a SAT-solver can be used to enu-
merate partial configurations based on modification of stan-
dard enumeration algorithm, and based on checking every
partial assignment inspired by interactive configuration. We
also show how existing DNNF algorithms can be used to enu-
merate partial configurations. We show feasibility of a SAT-
solver based implementation on configuration data from two
automotive companies.

The paper is organized as following. Section 2 covers for-
mal preliminaries, Section 3 gives a motivating example, Sec-
tion 4 presents the algorithms. Section 5 provides experimen-
tal results and discussion, and Section 6 concludes the paper.

2 Preliminaries

The configuration problem is a triple P = 〈X,D,C〉,
where X = {x1, x2, . . . , xK} is a set of variables, D =
{D1, D2, . . . , DK} is a set of corresponding finite domains,
and C = {C1, C2, . . . , CJ} is a set of propositional formulas
over atomic propositions xk = v where v ∈ Dk, specifying
conditions that the variable assignments have to satisfy.

A complete assignment to a configuration problem P is a
function A : X → D which is defined for all xk ∈ X . A
valid complete assignment (or solution) to P is a complete
assignment A for which each Cj is satisfied. A partial as-
signment to P is a partial function B : X → D defined for
variables xk ∈ Y ⊆ X . We will write vars(B) = Y ⊆ X
to denote the set of variables of B, or the scope of B. We
will call a partial assignment valid iff it can be extended to a
valid complete assignment. We will use P[B] to denote the
simplified problem obtained by setting the variables defined
in B.

3 Motivating example
Configuration problems describing complete products can
have thousands of variables and hundreds of thousands con-
straints. An engineer, or a group of engineers, is usually re-
sponsible only for a subset of the variables. It could be that it
is a requirement to design all possible solutions within the re-
sponsibility area, in case someone will order such a product.
In such a case it can be expensive to have overestimated set
of valid configurations, since engineers will spend time de-
signing forbidden ones. Underestimations are also bad, since
they lead to delays for designing a solution for ordered, but
missed configuration.

The problem can be illustrated by the following ex-
ample of a simple car configuration. Let X =
{body, engine, transmission} be the set of variables, and
D = {{mini, sedan, suv}, {gasoline, diesel, electric},
{manual, auto, evt}} be the set of corresponding domains.
Let the following be the set of constraints C:

• ¬((body = mini) ∧ (engine = gasoline))

• ¬((body = mini) ∧ (engine = diesel))

• ¬((body = sedan) ∧ (engine = electric))

• ¬((body = suv) ∧ (engine = gasoline))

• (engine = electric)→ (transmission = evt)

• (transmission = evt)→ (engine = electric)

Valid assignments of P = 〈X,D,C〉 can be presented, for
example, in a tabular form, as shown in Table 1. Each row
in the table corresponds to an assignment, and each column
corresponds to a variable. Each cell contains a value assigned
to the corresponding variable.

Let us suppose that there is a group of engineers that
are interested only in connection between body and trans-
mission, and they would like to disregard all information
about engine. So they define the limited scope to be S =
{body, transmission}. Valid partial assignments for S are
presented in Table 2.

One way to get the partial assignments is to enumerate all
complete assignments, project them onto the relevant vari-
ables (remove the irrelevant columns from the table), and re-
move duplicate partial assignments (rows). This approach is
infeasible in practice, as some industrial examples from au-
tomotive industry have 10120 allowed complete assignments.
However, scopes of interest for the engineers may have less

Table 1: Valid complete assignments

body engine transmission

mini electric evt
sedan gasoline manual
sedan gasoline automatic
sedan diesel manual
sedan diesel automatic
suv diesel manual
suv diesel automatic
suv electric evt

Table 2: Valid partial assignments

body transmission

mini evt
sedan manual
sedan automatic
suv manual
suv automatic
suv evt

than a thousand valid partial assignments, which is com-
putable using methods presented below. Approximations of
this approach are found in practice, where instead of all valid
assignments, only the ones that correspond to the products
built during the last year (for example) are considered, which
gives an underestimation of the answer. Clearly, there is a
need for a better method.

4 Enumerating valid partial assignments
This sections presents two algorithms adopted to solve the
problem based on satisfiability solvers. By a satisfiability
solver we mean a tool that is able to answer whether an in-
stance of a configuration problem has at least one valid com-
plete assignment, and provides one if such exists. For exam-
ple, tools for solving Constraint Satisfaction Problems (CSP-
solvers) and Boolean Satisfiability Problems (SAT-solvers)
can be used for this purpose. This section also shows how
DNNF algorithms can be used to enumerate valid partial con-
figurations.

4.1 Searching for complete, then forbidding
partial

One way to enumerate all valid complete assignments is to
iteratively search for any valid complete assignment, and in
addition to adding it to the result, add a negation of it as a
blocking constraint to the existing set of constraints. This
algorithm can be modified to enumerate valid partial assign-
ments, as shown in Algorithm 1. When a solver returns the
first complete assignment, the assignment is projected onto
the relevant scope. This partial assignment is returned as the
first element of the result, and also added as a blocking con-
straint, ensuring that the solver will not return any (complete)
assignment that will contain the partial one. Then this process
is repeated.

The ability of the solver to incrementally add blocking con-
straints, while still keeping previously inferred information,
is very important for the good performance of this algorithm.
This is supported by, for example, Minisat-like solvers [Een
and Sörensson, 2004; Een and Sörensson, 2003].

4.2 Enumerating partial, then extending
In this approach it is necessary to enumerate all partial as-
signments, and try to extend each of them to a valid complete
assignment using a solver. Just checking a partial assignment
against each of the constraints in isolation is not enough, be-
cause there could be dependencies between variables that are
not visible within the local scope, but are only visible within

Algorithm 1 Search for complete, then forbid partial

input: problem P = 〈X,D,C〉, relevant variables S ⊆ X
C ′ ← C
P ′ ← P
result← {}
while sat(P): /∗ ask solver ∗/

A← assignment(P) /∗ assignment from solver ∗/
B ← A projected on S
result← result ∪B
C ′ ← C ′ ∧ ¬(B as constraint)
P ′ ← 〈X,D,C ′)〉

return result

the complete scope. The solver can be used as following:
each partial assignment is added as an extra constraint to the
set of configuration constraints, and removed after the solver
has returned an answer. The key to the good performance in
this method is in the ability of the solver to cheaply add and
retract constraints consisting of atomic propositions; again,
Minisat-like solvers have this feature.

Algorithm 2 Enumerate partial, then extend

input: problem P = 〈X,D,C〉, relevant variables S ⊆ X
output: valid partial assignments
result← {}
for B in allAssignments(S):

if sat(P[B]):
result← result ∪B

return result

An example illustrating this method is presented in Table 3.
The columns for body and transmission contain all possible
(not only valid) partial assignments for S. The table must be
extended with the columns for variables (X \ S), in this case
it is only one, engine. If there is at least one valid complete
assignment that contains the partial one for the row, the values
for all variables are written in the row. Otherwise, a “—”
indicates that there is no such valid complete assignment, and
the partial assignment is not valid.

Table 3: Illustration of Algorithm 2 (Enumerate partial, then
extend).

body transmission engine

mini manual —
mini autmatic —
mini evt electric
sedan manual gasoline
sedan automatic gasoline
sedan evt —
suv manual diesel
suv automatic diesel
suv evt electric

An advantage of Algorithm 1 compared to Algorithm 2 is
that it builds upon heuristics of an underlying solver to skip
checking many of the non-allowed assignments. A disadvan-
tage is that to find the next partial assignment, it is necessary
to process a larger (increased by one) set of constraints; this
could be a problem when it is necessary to produce millions
of partial assignments. But when there is a small number of
valid partial assignments, or a user specifically asked for the
first hundred of assignments as a sample, and there are many
non-allowed configurations, Algorithm 1 can be beneficial.

4.3 Knowledge compilation: DNNF
Knowledge compilation is a family of approaches that ad-
dresses intractability of many Artificial Intelligence prob-
lems. A propositional model is compiled in an off-line phase
in order to support some queries in polytime [Darwiche and
Marquis, 2002]. Binary Decision Diagrams (BDDs) [Bryant,
1986] belong to this family and received substantial attention
as a tool for configuration problems [Hadzic et al., 2004].
Decomposable Negation Normal Form (DNNF) [Darwiche,
2001] is a data structure used in knowledge compilation for
which BDD is a special case. It is more succinct than BDDs
and its compilation time is often shorter than that of BDDs
[Subbarayan et al., 2007]. DNNF supports smaller number
of tractable operations than BDD, while still allowing poly-
time existential quantification (forgetting) and assignments
enumeration, which together allow polytime partial assign-
ments enumeration once DNNF is compiled.

Formally, a propositional formula a is in negation normal
form (NNF) if and only if a is either a positive or negative
atomic proposition (a literal); a conjunction ∧iai; or a dis-
junction ∨iai where each ai is in negation normal form. A
formula in NNF f is decomposable (DNNF) if and only if for
any conjunction a = a1∧ · · ·∧an no atomic propositions are
shared by any conjuncts in a: ATOMS(ai) ∩ ATOMS(aj) = ∅
for every i 6= j. A formula in NNF is smooth if for every
disjunction a = a1 ∨ · · · ∨ an, ATOMS(a) = ATOMS(ai) for
every i.

Existential quantification of variables from DNNF is pre-
sented in Algorithm 3 [Darwiche, 2001]. Every occurence
of irrelevant variable is replaced by true, and the formula is
simplified accordingly. This procedure preserves decompos-
ability, and its running time is linear in the DNNF size.

Algorithm 3 FORGET – existential quantification on DNNF

input: relevant variables S ⊆ X , DNNF f
output: DNNF with variables X \ S existentially quantified
if f is a Literal l:

if VAR(l) ∈ S:
return f

else
return true

else if f is a conjunction a1 ∧ · · · ∧ an:
return FORGET(a1) ∧ . . . ∧ FORGET(an)

else if f is a disjunction a1 ∨ · · · ∨ an:
return FORGET(a1) ∨ . . . ∨ FORGET(an)

Enumeration of assignments of DNNFs is shown in Algo-
rithm 4 [Darwiche, 2000], where each assignment is repre-
sented as a set of literals, and × is a Cartesian product on
them:

{N1, . . . , Nn}×{M1, . . . ,Mm} = {N1∪M1, . . . , Nn∪Mm}.
The complexity of enumerating the models of a smooth
DNNF f is O(mn2), where m is the size of f and n =
|MODELS(f)| [Darwiche, 1998].

Algorithm 4 MODELS – enumerating assignments of DNNF

input: smooth DNNF f
output: (complete) valid assignments of f , as sets of literals
if f is a Literal l:

return {{l}};
else if f is a conjunction a1 ∧ · · · ∧ an:

return MODELS(a1)× · · ·× MODELS(an);
else if f is a disjunction a1 ∨ · · · ∨ an:

return MODELS(a1)∪ · · · ∪ MODELS(an).

The overall process of using DNNF is shown in Algo-
rithm 5. DNNF for the car example is shown on Figure 1a.
DNNF with variable engine forgotten is shown on Figure 1b,
and its valid partial assignments can be found in Table 2.

Algorithm 5 Knowledge compilation based approach

input: problem P = 〈X,D,C〉, relevant variables S ⊆ X
output: valid partial assignments
f1 ← COMPILE(P)
f2 ← FORGET(S, f1) /* see Algorithm 3 ∗ /
m← MODELS(f2) /* see Algorithm 4 ∗ /
return m

Polynomial time guarantee for assignments enumeration
operation is an advantage of DNNF. However, the compi-
lation time of arbitrary constraints into DNNF is in general
exponential. When the data changes rarely, this time is amor-
tized among multiple queries, but when the data changes very
often, this off-line stage does not pays off.

DNNF have an important advantage: if it is smooth and
deterministic, it can be used to count the assignments [Dar-
wiche, 2000]. An NNF formula a is deterministic if for every
disjunction a = a1 ∨ · · · ∨ an, every pair of disjuncts in a
is logically inconsistent; that is, ai ∧ aj |= false for every
i 6= j. Unfortunately, operation FORGET does not preserve
determinism, and counting in such case will give overesti-
mated answer. However, even overestimated answer can be
useful in some cases. It is also possible to recompile the re-
sulting DNNF again into a deterministic one. Some practical
applications of counting for configuration using DNNF were
considered in [Kübler et al., 2010].

5 Experimental results
We analyzed the data from two automotive companies: three
datasets from the first company, and one dataset from the sec-

���

�� ������	
	�	�	����� ����
�������������	��

����
	���

������
����	

���

����

���

�����

���

	���

��
����	

����
��

���

��

���

���

����	
	�

���

����
���

���

�� ������	�	����� ����	��

���

���

��

(a) Full DNNF.

���

���������	�
�

���������

����
�����

��� ���

���

����

���

�����

�

���

����
��� �����������	

���

��	

���

�

���

�

���

�����	�

�

���

(b) DNNF with variable engine existentially quantified.

Figure 1: DNNFs for the car example.

ond, denoted as A, B, C and D, respectively. Details about
datasets are presented in Table 4.

We implemented Algorithms 2 and 1 on top of Sat4j solver
[Le Berre and Parrain, 2010].

A knowledge compilation tool was developed based on
BDD package BuDDy [Lind-Nielsen, 2002]. The pre-
ordering algorithms from [Narodytska and Walsh, 2007] were
implemented for sorting variables and restrictions, using in-
flation parameter r = 1.5 in the clustering step. A simplified
version of the MCL clustering algorithm [van Dongen, 2000]
was used, skipping the truncation heuristics and the sparse
matrix multiplication tools. No post-ordering of the variables
was included. The tool was able to handle only the smallest
dataset.

Another attempt to use knowledge compilation involved
c2d compiler [Darwiche, 2004] that compiles propositional
formulas to deterministic DNNF. Algorithms 3 (FORGET) and
4 (MODELS) were implemented to work with the DNNF out-
put of c2d. Using another DNNF compiler sharpSAT [Muise
et al., 2010] resulted in segmentation faults on some of the
datasets, and its debugging is underway.

Sat4j and c2d require the input to be in Conjunctive Normal
Form (CNF), that is it have to be a conjunction of clauses, and
each clause is a disjunction of literals. Each literal is either
a positive or negative atomic proposition. Constraints were
converted to CNF using Tseitin encoding [Tseitin, 1968].

Two times were measured. The first time measured was
preprocessing or off-line time. This included, for example,
DNNF compilation, and initial constraint propagation. The
results are presented in Table 5. BDD-based implementation
was not able to complete the compilation process of larger
instances. c2d compiler ran out of 2 GB memory limit (it is
available only as a 32 bit application) compiling the largest
dataset A.

The second time measured was the on-line time, or the time
to actually compute the valid partial configurations for one
given scope, while utilizing results from the off-line phase.
The results are presented in Table 6. SAT-based solution is
very robust on the datasets, even without having theoretical
guarantees on running times. The BDD-based solution, when

Table 4: Problem properties.

A B C D

Variables 511 446 92 217
Domain size, average 6.3 2.4 6.1 3.3
Domain size, max 108 82 75 59
of assignments 10150 1087 1055 1085

of valid assignments 10124 1057 1049 1033

CNF clauses 65183 1121 341 9010
DNNF nodes n/a 5071 5009 528583

Partial scope, variables 6 17 3 8
of valid partial assignments 200 13770 25 382

the BDD was successfully built, is the fastest. The reason
why DNNF-based method appears to be slow could be a non-
optimal implementation of Algorithms 3 and 4.

6 Conclusions
In this paper we looked at the problem of computing allowed
partial combinations, which is important for engineers work-
ing with product development. We presented several algo-
rithms, two of which are suitable for SAT-solvers, and one
that is based on DNNF. Our experiments showed that SAT-
based implementation can handle large datasets from automo-
tive industry quite efficiently. Preliminary experiments with
knowledge compilation tools showed that available DNNF
compilers cannot handle the largest dataset within the mem-
ory and time limits. However, DNNF-based method has

Table 5: Time for compilation/initial clause learning, sec-
onds.

A B C D

Sat4j, Alg 1 2 2 1 2
BuDDy timeout timeout 40 timeout
c2d out-of-mem 240 2 20

Table 6: Time to compute valid partial assignments
(FORGET+MODELS), seconds.

A B C D

Sat4j, Alg 1 10 29 0.12 3
BuDDy n/a n/a 0.01 n/a
DNNF from c2d n/a 681∗ 0.15∗ 22∗

∗Based on own, unoptimized implementation.

the advantages of polynomial time guarantee on the on-line
phase, and the ability to count the assignments when DNNF
is determenistic.

Acknowledgements
This work was carried out at the Wingquist Laboratory VINN
Excellence Centre within the Area of Advance — Produc-
tion at Chalmers, supported by the Swedish Governmental
Agency for Innovation Systems (VINNOVA). The support is
gratefully acknowledged.

References
[Amilhastre et al., 2002] Jérôme Amilhastre, Helene

Fargier, and Pierre Marquis. Consistency restoration
and explanations in dynamic CSPs — Application to
configuration. Artificial Intelligence, 135:199–234, 2002.

[Bryant, 1986] Randal E. Bryant. Graph-Based Algorithms
for Boolean Function Manipulation. IEEE Trans. Comput.,
35(8):677–691, August 1986.

[Darwiche and Marquis, 2002] Adnan Darwiche and Pierre
Marquis. A knowledge compilation map. Journal of Arti-
ficial Intelligence Research, 17(1):229–264, 2002.

[Darwiche, 1998] Adnan Darwiche. Model-Based Diagnosis
using Structured System Descriptions. Journal of Arti cial
Intelligence Research, 8:165–222, 1998.

[Darwiche, 2000] Adnan Darwiche. On the tractable count-
ing of theory models and its application to belief revision
and truth maintenance. Journal of Applied Non-Classical
Logics, 2000.

[Darwiche, 2001] Adnan Darwiche. Decomposable negation
normal form. Journal of the ACM, 48(4):608–647, July
2001.

[Darwiche, 2004] Adnan Darwiche. New Advances in Com-
piling CNF to Decomposable Negation Normal Form. In
ECAI 2004, 2004.

[Davis and Putnam, 1960] Martin Davis and Hilary Putnam.
A Computing Procedure for Quantification Theory. Jour-
nal of the ACM, 7(3):201–215, July 1960.

[Dechter and Dechter, 1988] Rina Dechter and Avi Dechter.
Belief maintenance in Dynamic Constraint Networks. In
AAAI-88, pages 37–42, 1988.

[Een and Sörensson, 2003] Niklas Een and Niklas Sörens-
son. Temporal Induction by Incremental SAT Solv-
ing. Electronic Notes in Theoretical Computer Science,
89(4):543–560, 2003.

[Een and Sörensson, 2004] Niklas Een and Niklas Sörens-
son. An Extensible SAT-solver. Theory and Applications
of Satisfiability Testing, 2919/2004:502–518, 2004.

[Gebser et al., 2009] Martin Gebser, Benjamin Kaufmann,
and Torsten Schaub. Solution enumeration for projected
Boolean search problems. Integration of AI and OR Tech-
niques in Constraint Programming for Combinatorial Op-
timization Problems, pages 71–86, 2009.

[Gottlob et al., 2007] Georg Gottlob, Gianluigi Greco, and
Toni Mancini. Conditional Constraint Satisfaction: Logi-
cal Foundations and Complexity. In Manuela M. Veloso,
editor, IJCAI-2007, pages 88–93, Hyderabad, India, Jan-
uary 2007.

[Hadzic et al., 2004] Tarik Hadzic, Sathiamoorthy Sub-
barayan, R.M. Jensen, Henrik Reif Andersen, J. Mø ller,
and H. Hulgaard. Fast backtrack-free product configu-
ration using a precompiled solution space representation.
PETO conference, 2004.

[Janota, 2008] Mikolas Janota. Do SAT solvers make good
configurators? 12th International Software Product Line
Conference. First Workshop on Analyses of Software Prod-
uct Lines, pages 1–5, 2008.

[Janota, 2010] Mikolas Janota. SAT Solving in Interactive
Configuration (PhD thesis). PhD thesis, University Col-
lege Dublin, 2010.

[Kübler et al., 2010] Andreas Kübler, Christoph Zengler,
and Wolfgang Küchlin. Model Counting in Product Con-
figuration. Electronic Proceedings in Theoretical Com-
puter Science, 29(LoCoCo):44–53, July 2010.

[Küchlin and Sinz, 2000] Wolfgang Küchlin and Carsten
Sinz. Proving Consistency Assertions for Automotive
Product Data Management. Journal of Automated Rea-
soning, 24(1):145–163, February 2000.

[Le Berre and Parrain, 2010] Daniel Le Berre and Anne Par-
rain. The Sat4j library , release 2.2 system description.
Journal on Satisfiability, Boolean Modeling and Compu-
tation, 7:59–64, 2010.

[Lind-Nielsen, 2002] Jø rn Lind-Nielsen. BuDDy: A BDD
package. http://buddy.sourceforge.net, 2002.

[Mittal and Falkenhainer, 1990] Sanjay Mittal and Brian
Falkenhainer. Dynamic Constraint Satisfaction Problems.
In AAAI-90, pages 25–32, 1990.

[Muise et al., 2010] Christian Muise, Sheila McIlraith,
J.Christopher Beck, and Eric Hsu. Fast d-DNNF Com-
pilation with sharpSAT. In AAAI 2010, pages 54–60,
2010.

[Narodytska and Walsh, 2007] Nina Narodytska and Toby
Walsh. Constraint and variable ordering heuristics for
compiling configuration problems. In Proceedings of the
20th international joint conference on Artifical intelli-
gence, pages 149–154, Hyderabad, India, 2007. Morgan
Kaufmann Publishers Inc.

[Norgaard et al., 2009] Andreas Hau Norgaard, Morten Ri-
iskjaer Boysen, Rune Moller Jensen, and Peter Tiede-

mann. Combining Binary Decision Diagrams and Back-
tracking Search for Scalable Backtrack-Free Interactive
Product Configuration. In Proceedings of the 21st Interna-
tional Joint Conferences on Artificial Intelligence(IJCAI-
09) Workshop on Configuration, 2009.

[Robinson, 1965] J. A. Robinson. A Machine-Oriented
Logic Based on the Resolution Principle. Journal of the
ACM, 12(1):23–41, January 1965.

[Sabin and Freuder, 1998] Mihaela Sabin and Eugene C.
Freuder. Detecting and resolving inconsistency and redun-
dancy in conditional constraint satisfaction problems. In
Proceeding of Constraint Programming (CP-98), 1998.

[Sinz et al., 2003] Carsten Sinz, Andreas Kaiser, and Wolf-
gang Küchlin. Formal methods for the validation of au-
tomotive product configuration data. Artificial Intelli-
gence for Engineering Design, Analysis and Manufactur-
ing, 17(01):75–97, August 2003.

[Sinz et al., 2006] Carsten Sinz, Wolfgang Küchlin, Dieter
Feichtinger, and Georg Görtler. Checking Consistency and
Completeness of On-Line Product Manuals. Journal of
Automated Reasoning, 37(1):45–66, August 2006.

[Soininen and Gelle, 1999] Timo Soininen and Esther Gelle.
Dynamic Constraint Satisfaction in Configuration. In
AAAI-99, Workshop on Configuration, pages 95–100,
1999.

[Subbarayan and Andersen, 2005] Sathiamoorthy Sub-
barayan and Henrik Reif Andersen. Linear Functions
for Interactive Configuration Using Join Matching and
CSP Tree Decomposition. In Configuration Workshop at
IJCAI’05, pages 7–12, 2005.

[Subbarayan et al., 2007] Sathiamoorthy Subbarayan, Lucas
Bordeaux, and Youssef Hamadi. Knowledge Compilation
Properties of Tree-of-BDDs. In AAAI 2007, pages 502–
507, 2007.

[Subbarayan, 2005] Sathiamoorthy Subbarayan. Integrating
CSP Decomposition Techniques and BDDs for Compiling
Configuration Problems. Integration of AI and OR Tech-
niques in Constraint Programming for Combinatorial Op-
timization Problems, 3524/2005:351–365, 2005.

[Tseitin, 1968] Gregory S. Tseitin. On the complexity of
derivation in propositional calculus. In A.O. Slisenko, ed-
itor, Structures in Constructive Mathematics and Mathe-
matical Logic, Part II, Seminars in Mathematics (trans-
lated from Russian), pages 234–259. Steklov Mathemati-
cal Institute, 1968.

[van Dongen, 2000] Stijn van Dongen. A cluster algorithm
for graphs. Technical Report INS-R0010., 2000.

	Introduction
	Preliminaries
	Motivating example
	Enumerating valid partial assignments
	Searching for complete, then forbidding partial
	Enumerating partial, then extending
	Knowledge compilation: DNNF

	Experimental results
	Conclusions

