Session-aware Recommendation

Dietmar Jannach
TU Dortmund, Germany
dietmar.jannach@tu-dortmund.de
Recommender Systems

- Automated recommendations
 - A pervasive part of our online user experience
 - Recommend us shopping items, movies, music, news, friends, jobs, groups or people to follow, restaurants, hotels...

- Recommendations are often personalized
- „User modeling“ is a central task in such systems
User Modeling & Recommendation

- Explicit preference statements
 - Indication of preferred topics (Google News) or ratings
 - Provision of strict criteria (e.g., location for a hotel recommender)

- User models are however often automatically derived by observing the user’s behavior
 - Which restaurants have you visited in the past?
 - Which other people do you follow?
 - For which hotels did you write reviews?
 - Which kind of music did you listen to yesterday?

- Recommendation task
 - Find objects (items) that match the user preferences
Outline

- Why a common academic problem abstraction can be insufficient
- Defining Sequence-Aware Recommender Systems
- Case Studies
 - Session-aware Recommendation in E-Commerce
 - Considering long- and short-term user models in e-commerce
 - The role of reminders
 - Session-aware Next-Track Music Recommendation
- Outlook
Matrix Completion

- A common problem abstraction
- Given a matrix
 - where rows are users and columns are items, and
 - a number in a cell indicates a preference statement (e.g., ratings) of a user for a certain item
- Compute values for the missing cells
 - Recommend items that have high predicted values

<table>
<thead>
<tr>
<th></th>
<th>Item1</th>
<th>Item2</th>
<th>Item3</th>
<th>Item4</th>
<th>Item5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>5</td>
<td>?</td>
<td>4</td>
<td>4</td>
<td>?</td>
</tr>
<tr>
<td>User1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>User2</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>User3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>User4</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
Does time matter here?

- Mostly no, researchers typically abstract this aspect
- However, consider the (usual) movie domain:
 - Doesn’t your taste change over the years?
 - Doesn’t the set of suitable movies depend on your current mood (or, generally, your context)?
- A few works on “time-aware” recommenders exist
 - They can, for example,
 - consider interest drift over longer periods of time and
 - look at the user’s behavior at a certain point in time,
 - or simply give less weight to older ratings
 - One found that considers the optimal point in time to recommend (i.e, wait for item to be discounted)
Beyond the movie domain

- Being able to predict which kinds of things a certain user generally likes, is important.

- However, assume you visit your favorite online shop, and here’s what you looked at or purchased during the last weeks:

 - Nike t-shirt
 - Jeans
 - Red t-shirt
 - Yellow t-shirt

- Now, you return to the shop and browse these items:

 - Converse shoes
 - Digital watch
 - Rolex watch
What to recommend?

- Some plausible options
 - Only shoes or only watches?
 - Mostly Nike shoes?
 - Maybe also some T-shirts?

- Using the matrix completion formulation
 - One trains a model based only on past actions
 - The context of the user’s current shopping intent is considered only in “context-aware” recommenders
 - Without the context:
 - The algorithm will probably most recommend only T-shirts and trousers
 - Might not be what you expect
Only in e-commerce?

- No, consider in particular media recommendation
 - Video recommendation on YouTube
 - Music recommendation on Spotify
 - Next-POI recommendation, next-app recommendation for smartphones
 - Next-page recommendation on web sites

- Take YouTube, as an example
 - Seem to change their strategy often-times
 - Past “similar videos” recommendations often very messy, containing out-of-context recommendations
 - Today
 - Main page recommendations cover many topics
 - Similar videos are in fact all similar
Session-aware Recommendation

- Requires a different problem abstraction
 - Has to consider the user’s most recent actions
 - But may also utilize past preferences
- Is based on different types of information
 - A sequentially ordered set of past user actions
 - Actions can have different types
- Recommendation task
 - Combine long-term and short-term preference signals predict the next user action
 - Item view, purchase, add-to-cart, watch, listen
 - Sometimes, the order of the actions can be important
General problem setup

Past sessions of the current user

Past sessions of the user community

Current session
Practical challenges

- Generally
 - How to automatically assess the user’s current interests?
 - How to combine them with the long-term preference profile?
 - How can we do this in real-time?

- Additional opportunities, as we know more than just item ratings
 - Should we recommend things that the user has inspected last week, but not purchased?
 - Can we utilize individual and general interest drifts?
 - Are there sequentiality constraints to consider
 - Music transitions, recommendation of accessories
Categorization

- Introduction of the family of “sequence-aware” recommender systems
 - Are based on time-ordered log data
 - Different supporting computational tasks, e.g.,
 - Context adaptation
 - Trend detection
 - Repeated recommendation
 - Consideration of ordering constraints

- Context adaptation subcategories
 - Last(-n) item based recommendation
 - Session-based recommendation (short-term only)
 - Session-aware recommendation (long-term, short-term, our focus here)
Technical approaches

- Sequence-learning techniques
 - Frequent pattern mining
 - Frequent item sets, frequent sequential patterns
 - Sequence modeling
 - Markov Models, Recurrent Neural Networks
 - Distributed item representations
 - Distributional and Latent Markov embeddings
- Sequence-aware matrix factorization
- Hybrids
 - Factorized Markov Chains, others
What about Deep Learning?

- Recurrent Neural Networks (RNN) are a “natural” method to deal with ordered data (session data)
- Recent proposal(s) by Hidasi and colleagues
 - Usage of custom RNN Gated Recurrent Units for the problem
 - Evaluation on e-commerce data set
 - Millions of anonymous user sessions
 - Data provided in the ACM RecSys 2015 challenge dataset
 - Significant accuracy improvements over different baseline methods reported
What about Deep Learning?

However:
- True value of the method not fully clear
 - Choice of baselines
 - Choice of evaluation protocol

Recent own experiments
- Benchmark their method with a session-based kNN method

Observations
- RNNs do not outperform the kNN method, and n most tested configurations they are worse
- RNNs can be computationally complex, preventing systematic hyperparameter tuning
- kNN with neighborhood sampling is light-weight and fast
- Nonetheless: RNNs capture signals that are not covered by the kNN method - hybridization works best

Outline

- Why a common academic problem abstraction can be insufficient
- Defining Sequence-Aware Recommender Systems
- Case Studies
 - Session-aware Recommendation in E-Commerce
 - Considering long- and short-term user models in e-commerce
 - The role of reminders
 - Session-aware Next-Track Music Recommendation
- Outlook
Short-term and long-term profiles

- Our general approach:
 - Use two-stage methods
 - Stage 1: Pre-rank recommendable items based on long-term profile
 - Stage 2: Filter or re-rank items based on assumed short-term situation or intents
 - Stage 1 can be offline, stage 2 must be “real-time”
 - Furthermore:
 - Consider various types of data, if available
 - Consider domain-specific quality factors, when relevant
E-commerce case study

- Mainly based on e-commerce log dataset
 - By Zalando, contains sample of user activity logs
 - 1 million purchases; 20 million view events; 170,000 sessions; 800,000 users; 150,000 different items

- Goal of the study
 - Assess the relative importance of short-term and long-term user models
 - Long-term models
 - Used selection of complex and simple methods
 - Bayesian Personalized Ranking, Factorization Machines, Item-item-Nearest-Neighbors, Popularity-based and Random Baselines

Contextualization Strategies

- **Strategies**
 - CoOccur
 - “Customers who bought ... also bought”
 - CoOccur-Filter
 - Variant, where the ordering is done slightly different
 - Feature Matching (FM)
 - Rank items up when they have features in common with those from the current session (e.g., same brand)
 - Recently Viewed (RV)
 - Recommend recently viewed items in reverse chronological order

- **Characteristics**
 - All can be applied in real-time
 - Extend short lists with baseline recommendations
Empirical results

- Evaluation method
 - Use parameterizable evaluation protocol (see later)
 - Hit rate (recall) and MRR as evaluation measures

- Observations for dense dataset (example)
 - Recall of best baseline method (BPR): 40%
 - Other:
 - CoOccur : 49%
 - RecentlyViewed : 64%
 - FeatureMatching : 71%
 - Hybrid : 73%
Observations

- Combination of various short-term signals as the most effective strategy
- Choice of baseline is relevant
 - Better baseline in most cases leads to stronger overall results
- Importance of short-term adaptation
 - Contextualization-only methods often already better than the best long-term profile
 - Becomes more and more relevant, the more is known for the current session
 - Do the computational efforts of complex offline models truly pay off?
- Reminding is a very effective strategy
Outline

- Why a common academic problem abstraction can be insufficient
- Defining Sequence-Aware Recommender Systems
- Case Studies
 - Session-aware Recommendation in E-Commerce
 - Considering long- and short-term user models in e-commerce
 - The role of reminders
 - Session-aware Next-Track Music Recommendation
- Outlook
More on reminders

- Follow-up study
 - Deeper analysis of reminders
 - Using again the Zalando dataset
 - Development of more intelligent reminding strategies
 - Evaluation of reminding strategy in field test

“Reco-minders” in practice

- Log data contains recommendation list for the view events
 - Every 10th recommendation was a reminder
 - More than 40% of the successful recommendations (recommendation clicks leading to purchases) were already known items
 - This also means that recommending unknown items is also very important, and helps users discover things
 - Users inspect an item multiple times before making a purchase
 - During one session, users inspect items of a small set of categories
 - Reminders as navigation shortcuts?
A field study

- A/B-tested different strategies on an e-commerce site for electronic gadgets

- Competing strategies
 - BPR as a learning-to-rank model
 - Similarity-based recommendation (using a reference item)
 - A personalized similarity-based approach
 - Popularity-based baseline
 - Present recently viewed items
 - In reverse chronological order
Field study outcomes

- “Success rate” as business measure
 - Click on recommendation and click on outgoing link to external retailer
 - Pure reminders led to best business value in this specific situation
Can we do better?

- Designed different “adaptive” reminding strategies
 - Recency-based baseline: Use reverse chronological order
 - Intensity-based ranking: Rank reminder items based on the number of past clicks
 - Item-similarity ranking: Select reminder items based on their fit for the current session
 - Session-similarity ranking: Select reminders based in their occurrence in similar past sessions

- General filtering strategy
 - Do not remind users of items in categories where recently a purchase was made
Empirical evaluation

- Done on three different datasets
- Baseline ranking method:
 - A session-based nearest neighbor technique
 - Configured to include reminders as well
 - More accurate than, e.g., BPR
- Parameterizable evaluation protocol
 - Configurable “obviousness gap”
- Results (hit rate, example, 2 evaluation variants)
 - v2 hides view event for target item.
 - Baseline: 0.156
 - Best result v1: 0.697
 - Best result v2: 0.363
- Adaptive reminders better than simple reminders
Outline

- Why a common academic problem abstraction can be insufficient
- Defining Sequence-Aware Recommender Systems
- Case Studies
 - Session-aware Recommendation in E-Commerce
 - Considering long- and short-term user models in e-commerce
 - The role of reminders
 - Session-aware Next-Track Music Recommendation
- Outlook
Music recommendation case study

- Problem setup: Next-track music recommendation
- Given:
 - List of recently listened tracks
 - Optional: history of past user listening sessions
- Recommend:
 - Tracks to listen to next
- Application scenarios
 - Automated radio stations
 - Playlist generation support

Basic recommendation strategies

- **Not-so-bad baseline strategies**
 (when using the hit rate as evaluation measure)
 (SAGH and CAGH lead to limited discovery)
 - SAGH: Recommend greatest hits of the artists appearing in the “history” of recently listened tracks
 - CAGH: In addition, recommend greatest hits of similar artists

- **A simple but competitive strategy**
 - kNN: Recommend tracks that appeared in similar listening sessions of other users
 - Outperforms also complex methods other like BPR
 - Existing, but smaller popularity bias
Phase 1: Multi-faceted scoring

- **Idea:**
 - 1) Determine basic score using kNN
 - 2) Consider variety of other signals
 - Compatibility of musical features for the given playlist, e.g., tempo or loudness
 - “Semantic” fit based on user-provided tags
 - Preferences of social friends
 - Fit according to the long-term preferences
 - Favorite artists
 - Content-based match with own past listening sessions
 - Neighbor sessions of past listening sessions
 - Statistic of previous listening events for same track (reminders)
 - 3) Determine final score as weighted combination
Phase 1: Results

Evaluation details
- Different playlist datasets and listening logs
- Weights determined in a manual process per dataset
- Focus on information retrieval measures

Observations
- Repeated recommendation is advantageous in most cases, in particular when user is not in “exploration mode”
- Playing favorite artists is good, but leads to lower artist diversity
- Taking past playlists into account (both in terms of content and track occurrences) is helpful
- Combining all scores leads to the best results
Phase 2: Greedy re-ranking

- **Idea**
 1) Create ranked list based on multi-faceted scoring technique
 2) Re-rank the **first few tracks** to optimize the user experience
 - Consider long-term quality preference patterns of the individual user (e.g., high diversity)

- **Effects**
 - Long-term preferences taken into account
 - General accuracy kept at high level
 - Multiple additional factors can be considered in parallel
 - Coherence or diversity of the immediate next few track
 - Coherence with the last few tracks
 - Smooth transitions, e.g., in terms of the tempo

Phase 2: Visualization

1. Determine sample set S_u (dotted) from user’s training data and calculate item diversity for S_u.

2. Generate ranked recommendations (accuracy optimized).

3/4. Retain top-n list T_u and exchange list X_u.
 Exchange and optimize to match user diversity tendency.

5. Return optimized T_u and discard X_u.

[Diagram showing phase 2 visualization with steps 1 to 5 and corresponding explanations]
Phase 2: Observations

- **Accuracy aspects**
 - Accuracy depends on the number of tracks to re-rank. Accuracy compromises usually very low
 - In some cases, re-ranking even leads to higher accuracy (in terms of the hit rate)

- **Optimization effects**
 - Method proves to be effective in various dimensions
 - Multiple optimization goals related to the short-term situation can be considered in parallel

- **Performance**
 - Computational demands limited due to greedy approach
Outline

- Why a common academic problem abstraction can be insufficient
- Defining Sequence-Aware Recommender Systems
- Case Studies
 - Session-aware Recommendation in E-Commerce
 - Considering long- and short-term user models in e-commerce
 - The role of reminders
 - Session-aware Next-Track Music Recommendation
- Outlook
Methodology considerations

- Proposed or applied different procedures and measures for session-aware recommendations
- 1) Protocol for the offline evaluation of session-aware recommendation
Methodology considerations

2) Protocol variant for the investigation of reminders
Methodology considerations

- Validating outcomes of offline experiments through user studies
- General problem
 - Assume, we have a new next-track music recommendation method that leads to higher accuracy than previous methods (e.g., in terms of the hit rate)
 - Would such a list be perceived to be of better quality also by end users?
 - In the general field of recommender systems, a number of papers show that this is not necessarily the case.
A user study in the music domain

- Selected outcomes of offline experiments in next-track music recommendation:
 - Recommending generally popular tracks of artists in the recent history is strong baseline
 - A session-based kNN method usually leads to very competitive results
 - Considering multiple aspects like the mood of a playlist or the genre within the kNN approach is even better and leads to more homogeneous recommendations (kNN+X)

A user study in the music domain

Research questions (selection):

- Does considering additional characteristics like the genre also translate into a higher perceived recommendation quality?

- What is the quality perception of a method that focuses only on very popular tracks?

- Can we observe any difference in quality perception when the recommended tracks are already known or new to the study participants?
A user study in the music domain

- Study setup (excerpt)
 - Performed a web-based online experiment
 - Main tasks:
 - Participants had to listen to a playlist beginning (4 tracks), with no track information revealed
 - Then they rated the suitability of continuations that were generated by different algorithms and indicated if they knew the track or artists
 - 277 students participated, leading to 300 trials
 - Participants who did not listen to the tracks long enough were removed from the analysis
Main outcomes

- The kNN method that used additional signals was also consistently better than the pure kNN method
 - The insights from the offline experiment were valid also in terms of the user’s quality perception
- Strong differences exist depending on whether the participants knew the tracks or not
 - When considering all trials, the popularity-based method was perceived to lead to better playlists
 - When considering only situations when novel tracks were recommended, the kNN+X method was best
- Side implication
 - Potential familiarity biases in such user studies exist

Summary

- Session-aware recommendation is a common problem in real-world application scenarios of recommenders
- A number of algorithmic approaches exist
- Examples of recent works discussed in the e-commerce and music domain
 - Considering both long-term preference models and short-term user preferences can be key to the success of recommenders
 - Reminding users of known items can be useful
- Open issues
 - Evaluation protocol - no standards yet exist
 - Validity of results from offline studies. Not fully clear - presented results of a recent study
Thank you for your attention

Contact:
 dietmar.jannach@tu-dortmund.de
References

