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ABSTRACT
Information overload has become an increasingly common
problem in today’s large scale internet applications. Collab-
orative filtering(CF) recommendation systems have emerged
as a popular solution to this problem by taking advantage of
underlying social networks. Traditional CF recommenders
suffer from lack of scalability[18] while decentralized recom-
mendation systems (DHT-based, Gossip-based etc.) have
promised to alleviate this problem. Thus, in this paper we
propose a decentralized approach to CF recommender sys-
tems that takes advantage of the popular P2P T-Man algo-
rithm to create and maintain an overlay network capable of
generating predictions based on only local information. We
analyze our approaches performance in terms of prediction
accuracy and item-coverage function of neighborhood size
as well as number of T-Man rounds. We show our system
achieves better accuracy than previous approaches while im-
plementing a highly scalable, decentralized paradigm. We
also show our system is able to generate predictions for a
large fraction of users, which is comparable with the cen-
tralized approaches.
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1. INTRODUCTION
In today’s large scale internet applications, users are deal-

ing with very large amounts of data that can become time-
consuming to analyze. This is known as the information
overload problem. A popular way to address this matter
is to use recommendation systems. The most common use
of such systems is in e-commerce applications where a user
needs to browse very large databases of items. A CF rec-
ommender system can alleviate this problem by offering the
user a shortened list of items which other clients with simi-
lar taste have found interesting. Recommender systems are
also being used in social networks as a way of helping users
discover new links.

CF Recommenders rely on the presumption that people
tend to assign more weight to suggestions coming from friends
or people with similar interests. CF strategies similarly
put more weight on suggestions received from more simi-
lar users. This means that this class of approaches rely on
having enough information on users to determine the rela-
tionship between them with a high degree of accuracy. This
leads to the recommendation accuracy and coverage being
dependent on whether the system can accurately determine
the type of relationship between users. An alternative ap-
proach uses matrix factorization (MF) to generate predic-
tions even for very sparse datasets. At the cost of accuracy,
MF-based approaches manage to produce more predictions
than CF recommenders, this being the reason why MF-based
recommender systems are growing in popularity, as real-life
databases are often very sparse.

Traditional recommender systems (both CF and MF based)
are implemented in a centralized fashion, in order to in-
crease item coverage. This paradigm however results in
high computational costs and renders these systems imprac-
tical and costly to run. Thus, decentralized approaches are
needed in practice. Distributed approaches rely on tech-
niques borrowed from P2P(peer-to-peer) and Grids such as
DHTs or Gossip-based algorithms. Since traditional CF rec-
ommenders tend to group similar users together, which is ex-
actly what the Network Overlay is doing, there is no signifi-
cant loss in prediction accuracy. To further improve perfor-
mance, it is desirable to implement trust-awareness withing
neighborhoods, as a complement to this method.

In this paper we will address the scalability problem of



the centralized trust-based recommenders by using popu-
lar techniques from P2P systems. We propose the use of
T-Man[9] to cluster similar users together and use a novel
trust inference model to improve prediction accuracy over
previous trust metrics. We showcase the improvements our
approach achieves and analyze its performance over two im-
portant datasets, namely Epinions and Yahoo! Webscope[1].
We analyze the influence of neighborhood size and the num-
ber of T-Man rounds on prediction accuracy and item cover-
age. Also, we propose methods for increasing item coverage
by varying the distance metric used by T-Man and intro-
ducing recursive predictions.

In the following section we will describe previous work
in the field of trust-aware recommender systems with a fo-
cus on decentralized CF. In section III we will present our
approach to creating the network overlay and to the com-
putation of trusts between neighboring nodes. Section IV
will be dedicated to accommodating our experimental setup
while section V will contain the results of our experiments
and evaluation of the performance of the system. The final
section will be dedicated to the conclusions and future work.

2. BACKGROUND
In this section we will be briefly describing previous work

in the domain of recommender systems with a focus on de-
centralized approaches and trust inference techniques. Gossip-
based recommenders rely on epidemic network overlay algo-
rithms to allow nodes to generate recommendation by only
using a limited amount of information available to them in
the overlay network. The main advantages of these algo-
rithms are their intrinsic scalability and their ability to gen-
erate predictions very fast, since only local information is
used.

2.1 Decentralized CF
Using peer-to-peer techniques in the context of distributed

recommender systems has been considered in other works.
This paradigm shift is common when dealing with very large
databases such as the case of social networks, due to its in-
trinsic scalability. Research into the field of recommenders
has also shown interest in decentralized approaches as a re-
placement for the more traditional centralized techniques.
In [25], Ziegler presents a detailed analysis of the challenges
related to decentralized recommenders and proposes a frame-
work for implementing such systems. The two main types
of CF recommenders are memory-based and model-based.
Memory-based CF recommenders use the ratings of a sub-
set of users to generate recommendations, usually the most
similar users to a user or its neighbors in the network. This
method is usually referred to as user-based CF. A variation
of this method uses the same principle but it predicts the
rating of an item based on similar items rather than users.
This method is referred to as item-based CF(or content-
based CF). Model-based CF recommenders rely on creating
a model from a collection of users and items. The resulting
model can then be used to make recommendations with-
out the need of storing the collection from which it was in-
ferred. The drawback of this approach is that creating a
model is usually more complicated and harder to implement
than simply using ratings expressed by other users directly,
as in the case of memory-based recommenders.

2.1.1 Model-based Approaches
Random walk models, such as those presented by M. Gori

and M. Jamali in [6] and [8] , have been suggested as a
solution to sparsity in CF recommender systems. Random
walkers work by exploring the social network, starting from
a user and taking a probabilistic path outwards into the net-
work until it reaches a certain depth. The probability of a
path being chosen is usually dependent on trust values be-
tween nodes. During this exploration, the walker uses the
ratings of encountered users to create a model that can later
be used for recommendations. In [14], B. N. Miller proposes
a peer-to-peer recommender system in which nodes exchange
ratings with a neighbor at each step in order to construct
an item to item similarity matrix which can then be used
to make offline predictions. The choice of neighbors as well
as determining the neighbors of a user are implementation
dependent in this approach. Unlike our approach, in [14],
Miller does not maintain an overlay network. This is under-
standable since his proposed system does not need to keep
similar profiles easily accessible and only needs a profile for
a one-time computation, after which it can be discarded. In
our approach, the most similar profiles must be consulted
for every recommendation, meaning an overlay network is
needed in order to keep those profiles easily accessible.

2.1.2 Memory-based Approaches
In [7], a DHT-based (Distributed Hash Table) approach is

suggested, where the central dataset is organized into ”buck-
ets” of users which can be saved on individual nodes, each
user using his most suitable ”bucket” to choose neighbors
with which to generate predictions. In [18], user clustering
is suggested as a solution for solving scalability problems as
well as a means of improving accuracy. Unlike our approach,
Sarwar et. al. [18] presents clusters as groups of users where
all the users in a cluster are each other’s neighbors, whereas
in our case, the ”neighbor” relation is directional. A direc-
tional ”neighbor” relation is desirable since, while a user’s
neighbors will be the most similar users to it, there might
be others that are more similar to a neighbor than said user.
Ormandi et. al.[17] determines that using gossip based algo-
rithms to cluster a network in the context of recommender
systems offers potential for increasing accuracy of predic-
tion. This is particularly interesting for our work since in
[17] the main algorithms being tested are variations of the T-
Man algorithm. However the aforementioned work does not
analyze item coverage and does not cover trust-awareness in
recommender systems, instead focusing on load-balancing.

2.2 Trust Inference
Trust has been the focus of much research since it emerged

as a reliable means of improving recommendation accuracy.
Trust is presented by Mui et. al. in [15] as ”a subjective
expectation an agent has about another’s future behavior
based on the history of their encounters”. Several other def-
initions are presented by Zhou et. al. in [24]. Zhou also
presents a more thorough presentation of a wide range of
approaches to trust-aware recommender systems.

Throughout this paper we use the term trust to denote
the confidence a user has in the recommendations of an-
other. As discussed in [12], trust complements CF recom-
menders by addressing such problems as the reduced com-
putability of similarity between users and improving accu-
racy of prediction. In [22], Yuan et al. describes trust net-



works as being social networks with user defined trust net-
works. The authors determine that this type of networks
hold the property of small-worldness, which involves having
closely clustered users and small average path lengths be-
tween any two users. They then use this finding to define
a model for recommender systems that takes advantage of
the small-worldness of social networks in order to increase
both accuracy and item coverage. Several approaches, such
as Golbeck[5], Kuter et al.[10], Avesani et al.[2], DuBois et
al.[4] and Zarghami et al.[23], also exploit underlying mech-
anism in a network that allows for explicitly stated trust
statements between users. However, not all systems support
such features and the ability of users to express confidence
in others is limited due to the time and effort required to
evaluate other members of the network in order to form an
opinion. Therefor, the ability of recommender systems to
infer trusts from limited knowledge is still a desired feature.

P. Victor et. al. in [20] proposes a model that uses distrust
to complement trust. This approach helps deal more effec-
tively with users that have undesired behavior. The concept
of distrust is also used in [19] by N. Verbiest et al. In their
work, Verbiest et al. analyses the effect of path length on
trust and accuracy. This is particularly interesting to our
work since we also observe the effects of using further neigh-
bors on the accuracy and item coverage of our recommender
system.

The technique used to infer trust between users is critical
to the accuracy of a trust-based CF recommender. Pearson
similarity is a popular weight metric, however, as shown in
[13], using a more complex weighing measure than just sim-
ilarity has the potential to offer more accurate results, espe-
cially in sparse datasets. Approaches such as those proposed
by J. Golbeck et al. [5], [10] take advantage of trust ratings
explicitly stated by the users themselves to infer trusts be-
tween nearby members of the network through trust propa-
gation. In [23], Fazeli et al. proposes the use of a local trust
metric together with a global trust metric computed using
the in-degree of a node in relation with the trust on each
incoming edge. The global trusts are then used to create a
global repository of top trusted users for each item which
can then be referenced by other nodes in order to find new
neighbors in the network. It is important to note that our
trust inference technique does not require any user-defined
trust between nodes and it computes trust knowing only
user ratings.

The trust metric proposed by O’Donovan and Smyth in
[16] is similar to ours in this respect. O’Donovan uses the
known ratings to create an artificial history of predictions for
each user. By predicting the known ratings of users using all
the other users and counting the amount of correct predic-
tions that each user makes, O’Donovan and Smyth establish
a global trust for each user as the ratio of correct predictions
to total predictions of a user(in [16], they also propose item
level trust which is similar to user level trust only applied on
items; both trust models can be used concurrently to offer
better results). Our approach follows the same path of using
artificial predictions of known ratings to adjust trust values
for users. However, we compute the trusts differently, solely
within a neighborhood, resulting in local trusts rather than
global trusts. O’Donovan’s method requires the analysis of
the whole database when computing a user’s trust rating
which will greatly impede scalability and will become more
computationally demanding as the number of users grows.

Our technique can calculate a user’s trust towards any sub-
set of users in the network, making it easily implementable
in a decentralized paradigm.

Unlike us, O’Donovan computes trusts as an absolute fea-
ture of a user, all users in the network have the same trust in
a given user. We refer to our trusts local because, as we will
show in section III, the values computed are relevant only
in the context of a neighborhood. Thus, the trust between
two users depends on the profiles of the other neighbors as
well as the profiles of the two users.

3. APPROACH
In this section we will present our proposed approach.

First, we will describe how we use the T-Man algorithm
in the context of a recommender system for social networks,
and then we describe the trust inference technique we use to
compute the trust between two users based on their known
ratings.

3.1 Network Overlay
A network overlay is a network constructed on top of

another network, by reorganizing the logical links between
nodes in order to make it more suitable for the application
logic. In our case, the overlay network will be built on top
of the social network and a user’s resulting neighbors will
not necessarily be his friends in the social network.

3.1.1 Distance Metric
The T-Man algorithm[9] is widely used in P2P systems

for obtaining overlay networks for a very diverse range of
purposes. T-Man is a gossip algorithm that works by hav-
ing each node maintain a set of neighbors by exchanging
on each iteration neighborhood entries with a node in that
set deemed most suitable. After the exchange takes place,
both nodes will replace entries from their neighborhood with
nodes that are more suitable from the received set of en-
tries. Suitability is usually represented by a distance func-
tion that is implementation dependent. To increase con-
vergence speed, T-Man is usually used in conjunction with
Cyclon[21], a gossip-based random peer sampling algorithm.
Thus, each node will have a random view beside its neigh-
borhood. After each exchange of entries with a peer, along
with the step described earlier, each node also keeps the most
suitable entries from its random view in its neighborhood.

Our goal is to fill each user’s neighborhood with its most
similar peers. An intuitive distance metric for our case would
be using the Pearson similarity coefficient. However, Pear-
son similarity has a negative impact on the number of rele-
vant predictions the system is able to make, since it disre-
gards the number of items in common between two users.
Thus, we will use a slightly different version :

Similarity(u1, u2) =

∑
i ru1,i × ru2,i√∑

i C × r2u1,i
×

√∑
i r

2
u2,i

(1)

where ru,i is the rating user u assigned to item i and C is a
value in the interval [0,1] if u2 has not rated item i and 1 if
u2 has rated item i. The higher C is, the more weight we put
on the two users having common rated items at the expense
of putting less weight how similar their ratings are. This
new metric offers a balance between how similar two users
are in terms of ratings for common items as well as in terms
of the number of items in common. In our experiments we



use C = 0.5. We can now form neighborhoods based on the
similarity of ratings in users profiles as well as the number of
items they have in common, meaning we are more likely to
be able to make predictions for items more relevant to users.
It is important to note that in the trust inference step and
recommendation step, only the nodes in the neighborhood
will be used.

3.1.2 Dealing With Sparsity
In order to deal with potential coverage issues, we pro-

pose using recursive rating prediction requests. This way, if
a neighbor does not have the desired item rated, it can ask
its neighbors for a prediction for the item in question, and
pass it to the user asking for a prediction as its own. This
will greatly reduce situations in which none of the neigh-
bors of a user have the item the user is interested in. How-
ever, this behavior can not scale very well, the number of
involved neighbors potentially increases exponentially. For-
tunately, as we will present in the section V, having recur-
sive calls with a depth of maximum 2 is sufficient for even
a very sparse database. To reduce complexity for higher
range values, recursive calls can be made only when none
of the neighbors have the desired item rated. Furthermore,
the overhead can be reduced by allowing nodes to store the
ratings of their neighbors locally, thus significantly reducing
the number of nodes involved in recursive predictions at the
expense of used memory.

3.2 Trust Inference
Our approach for computing trust is inspired by machine

learning techniques[11], in the sense that we use a user’s
known ratings as a training set, based on which we tune
the trusts so that we obtain sufficiently accurate predictions
for the known ratings. In our experiment, trust is com-
puted after a certain number of T-Man rounds determines
the neighborhood of each user. In real scenarios, the T-Man
algorithm can be run continuously and the trusts can be
computed on stable neighborhoods, where a stable neigh-
borhood is one that has not changed in a set number of
rounds.

3.2.1 Modeling the system
We chose to use the formula described by (2) to calculate

predictions of an item’s rating for a user. The formula is one
of the most popular ones for predicting ratings and is also
used by Resnick prediction and O’Donovan et al in [16].∑

n(rn,i − rn) × wn∑
n wn

= ri − r (2)

where rn,i is the rating of neighbor n for item i, rn is the
average of user n’s ratings, wn is the weight the user assigns
to neighbor n(or the trust of the user for n; we will be using
the terms ”trust” and ”weight” interchangeably), ri is the
user’s rating for item i and r is the user’s average rating. It
should be noted that the denominator sum is not of weights
in absolute value, meaning we only consider weights to be
positive. This makes perfect sense since we are interested in
the proportions between them and not their actual values.

Given the fact that we know all the ratings involved, since
we are applying it for items a user has already rated, we can
interpret (2) as an equation with the trusts representing the
variables. If we use the formula for every item a user has
rated, we can form a linear system of I equations and N

Figure 1: Trust distribution obtained for Yahoo!
Webscope dataset. Each bracket represents an in-
terval of size 0.1 in the allowed trust interval of (0,1].

variables, where I is the number of rated items the user
currently has, and N is the number of neighbors, of the
form: 

∑
n (rn,0 − rn − r0 + r) × wn = 0

· · ·∑
n (rn,i − rn − ri + r) × wn = 0

(3)

This system most likely will not have positive solutions, how-
ever we can try to approximate them. For this step, we have
chosen to use the algorithm proposed by D. Cartwright in [3],
which uses expectation maximization[11] and iterative pro-
portional fitting to gradually converge to an approximation
of the solution of systems similar to the one above. However,
in order to be able to use this method, we must first over-
come the constraint that the system can only have positive
coefficients. To ensure that the coefficients remain positive
no matter what ratings are involved in the calculation, we
will modify the system, as follows:


∑

n (2 ×Rmax + rn,0 − rn − r0 + r) × wn = C

· · ·∑
n (2 ×Rmax + rn,i − rn − ri + r) × wn = C∑
n wn = N × Trustmean

(4)

where C = 2 × Rmax ×
∑

n wn which, considering the last
equation in the system, will actually be a constant C =
2 × Rmax × N × Trustmean. In the above formulae, Rmax

is the maximum rating available in the profile database. It
is now obvious that all the coefficients will become positive.

3.2.2 Approximating the Trusts
As we stated earlier, we will use D. Cartwright’s approach

to approximate solutions for equation (4) . Our case is a
particularly simplified example of the types of systems the
algorithm can solve, meaning the algorithm can be reduced
to a much simpler form. Thus, the algorithm is modified as
follows: where Ci is the value of the sum in the left term of
equation i of the system with the current values for weights,
coefi,n is the coefficient of wn in equation i, or 2 ×Rmax +
rn,i − rn − ri + r, and C is the constant mentioned above.
Also we must mention that we initialize the weights with
random values in the trust interval we chose to use. It is
very important to state that the trust values are updated



Algorithm 1 Approximating the weights.

while not converged do
for each n in neighbors do

wn = wn ×
∑

i∈Items
C
Ci

×coefi,n∑
i∈Items coefi,n

end for
end while

simultaneously. The terminating condition is described in
more detail in the following section.

3.2.3 Convergence
In Cartwright’s algorithm[3], the convergence of the algo-

rithm is given by the condition that the Kullback-Leibner
divergence between the solutions vector before and after a
step should be below a certain threshold. However, we want
to achieve a balanced trust distribution and we prefer to
prevent some users from receiving an imbalanced high trust
value. For example, if one of the neighbors had exactly the
same ratings as the user, to solve the system, an obvious
solution is to give all the other neighbors 0 trust and use
the value required to satisfy the last equation of (4) , i.e.
N × Trustmean. Such situations are often encountered in
sparse datasets, when the user has a small number of rated
items but a significantly higher number of neighbors, result-
ing in far more variables than equations.

To deal with this setback, we will limit the values for trust
to a certain interval. We used a minimum value of 0.1 and
a maximum value of 1. If at a step, a trust value exceeds ei-
ther, it is rounded to the appropriate end of the interval after
each iteration. Even so, trust distribution tends to clutter
around the edges of the interval, so we interrupt the iter-
ations when the number of values that have reached either
end of the interval exceeds 10% of the size of the neighbor-
hood. This value can be changed if needed. However, we
observed that it gave a good trust distribution across the
allowed interval as shown in figure 1.

4. EXPERIMENTAL SETUP
To test the performance of our system and trust inference

method, we used two datasets. The first dataset is obtained
from Yahoo! Webscope [1], which represents relatively less
sparse databases. The second is from Epinions.com, which
reflects the sparse databases one would expect to encounter
in a real scenario. The Yahoo dataset consists of 15,400
users and 300,000 ratings for 1,000 items, with a minimum
of 10 ratings per user. The Epinions 1 dataset consists of
49,290 users, 139,738 items and 664,824 ratings, some of the
users(9,127 of them) having empty profiles. This sample
has a more disproportionate distribution of ratings across
the scale 1 to 5, a large majority of the ratings being either
4 or 5. Also, in the case of the Epinions dataset, the average
number of ratings per user is only 13.

To evaluate our methods, we will use the leave-one-out
methodology in which we hide one rating for every user and
then run the algorithm and try to predict the hidden rat-
ings. We initialize the neighbors with a set of randomly
picked nodes. In a real scenario, this initialization could be
replaced by choosing to use the friends of a user in a social

1Epinions dataset available at
http://www.trustlet.org/wiki/Epinions datasets

network for example. As a measure of item coverage, we
evaluate the number of users for which the system can gen-
erate a prediction for the hidden rating i.e. at least one of the
neighbors can provide a rating for the item in question. We
evaluate the performance on the above mentioned datasets
using 3 trust metrics: Pearson correlation, the metric pro-
posed by O’Donovan in [16] and our approach, presented
earlier.

5. EXPERIMENT RESULTS
In this section we will discuss the performance of our sys-

tem in terms of accuracy of prediction and coverage. We
will be measuring accuracy in terms of MAE (Mean Abso-
lute Error) and Coverage as the number of users for which
the system can generate a prediction for the requested item
i.e. the item hidden from the profile of the user.

We have structured our findings in two sections. First, we
will present the performance of our trust metric and compare
the obtained MAE by different approaches against the cho-
sen baselines. Secondly, we will present the influence of the
network overlay algorithm and the results of our attempts
to maximize coverage in our decentralized system.

5.1 Trust Metric and MAE
In this section we will discuss the results of our trust met-

ric compared to previous approaches and evaluate the evo-
lution of accuracy and coverage function of the neighbor-
hood size. The chosen baselines for our system are regular
prediction taking all the users into account with trust rep-
resented by the Pearson similarity and by the trust metric
proposed by O’Donovan in [16]. These baselines are referred
to as Pearson control and O’Donovan control in the figures
in this section. We compare the performance of these two
methods against our system using the overlay algorithm in
combination with the trust metrics used in the baselines as
well as with our own metric, described in the section III.

Figure 2 shows the performance of the different trust met-
rics over the size of the neighborhood in the case of the Ya-
hoo! Webscope dataset. We can observe that all the metrics
have increased accuracy with the size of the neighborhood
and all show very similar performance. The chosen baselines
are the variations of the Resnick prediction technique, pre-
sented in [16], (using Pearson correlation as similarity and
O’Donovan trusts) over the whole set of users.

We notice that our decentralized approach yields better
results than the best performing baseline(0.95 compared to
the baseline of 1.01), while presenting the added advantage
of scalability. The trust metric used in neighborhoods seems
not to influence performance, Pearson, O’Donovan trust and
our trust showing very close performance. This is because
the Yahoo dataset only presents the ratings for 1,000 items
(compared to 139,738 in the case of Epinions). This will
allow for more relevant similarity computations when form-
ing neighborhoods since odds are nodes will encounter peers
with more items in common, compared to Epinions. Since
the resulting neighbors will have a higher number of items
rated similarly to the active user, chances are they will also
have other interesting items for the active user rated simi-
larly among themselves. Meaning that, when making pre-
dictions, since all the suggestions will be similar, the weights
of each user will be less relevant than in the case of Epinions.

On the Epinions dataset however, our trust metric outper-
forms Pearson similarity implemented both in a distributed



Figure 2: The evolution of MAE over neighborhood size for Yahoo! Webscope(left) and Epinions(right)
datasets after 150 T-Man rounds. We use our decentralized approach in combination with Pearson similarity,
O’Donovan’s trust metric and our trust metric and compare with the baselines set by O’Donovan’s trust
metric and Pearson similarity over the whole dataset.

Figure 3: Evolution of MAE over T-Man rounds for
different trust metrics on Epinions dataset.

and in a centralized fashion. O’Donovan trust performs bet-
ter especially for smaller neighborhood sizes, however, we
must note that these trusts were computed using the whole
database as a training set(best performance scenario). Even
so, the results are similar for high neighborhood size to our
trust metric. O’Donovan’s metric achieves better accuracy
partly because it often fails to make predictions for items
that have been rated by only a few users and for which
other approaches produce predictions of lower quality. This
failure is due to not finding two users that have rated an
item within the designated error threshold required for com-
puting O’Donovan trust. Also, implementing this metric in
a purely decentralized fashion would be significantly more
difficult as it requires a large training set. In these experi-
ments, the distance metric chosen for forming the overlay is
the variation of Pearson similarity presented in formula (1).

In figure 3 we can clearly notice how accuracy increases as
the network overlay converges. In this experiment we com-
pare the evolution of accuracy with the number of T-Man
rounds and also compare the two earlier mentioned distance
metrics used in the T-Man implementation: regular Pearson
similarity and its variation presented in formula (1). From
the point of view of prediction accuracy, both distance met-
rics give similar results, with the proposed variation yield-
ing slightly better results when combined with our proposed
trust. In the case of using Pearson similarity as trust, the

variation only gives lower errors in the earlier rounds while
using the default Pearson similarity as a distance metric
offers slightly better accuracy near the convergance of the
network.

5.2 Network Overlay and Coverage
We will refer to a request from a node to a neighbor for

the rating of an item as a prediction request. A prediction
request is successful if the neighbor can provide a rating
for the desired item (either his own rating or a prediction
that it obtains from its own neighbors). In section III we
discussed ways in which we can overcome sparsity and we
proposed two methods which can be used concurrently. The
first method is using a slight variation of the Pearson simi-
larity as the distance metric in the implementation of the T-
Man overlay management algorithm. The specified function
is presented in equation (1). The second is using recursive
prediction requests which will allow neighbors that do not
have a requested item rated to subsequently ask its neigh-
bors for a prediction of the rating for the item in question
and pass the prediction as its own rating to the initiating
node. To avoid such requests going on forever, we limit such
calls by a time-to-live, which we refer to as search range.

Figure 4 presents the results of varying the search range
for the Epinions dataset. It is worth noting that in terms of
coverage, our proposed decentralized approach yields very
similar results for our trust metric and Pearson similarity,
analyzed in the previous subsection. In the left image of
figure 4, we can clearly observe that using regular prediction
techniques, the coverage is very poor for sparse datasets like
the one analyzed in this experiment. For 120 neighbors, less
than 25% of the nodes manage to obtain a prediction from
their direct neighbors, meaning that in 75% of the cases,
none of the 120 neighbors had the item in question rated.
Since the Epinions dataset is a good representation of a real-
life scenario, such low coverage is unacceptable.

We notice that increasing the range to 1 (i.e. allowing
immediate neighbors to ask their neighbors for a prediction
for that item) greatly increases coverage. In this case cov-
erage in the case of 120 neighbors approaches the baseline
set by using Resnick prediction with Pearson similarity over
the whole dataset (73% coverage). The baseline is only 73%
because 9,127 of the 49,290 in the network have no items



Figure 4: Influence of search range on item coverage and prediction accuracy for Epinions dataset.

rated meaning we can not verify prediction results against
their real rating and we consider these requests as unsuc-
cessful. On top of that, we have hidden 1 item from each
user, meaning that sparsity is even worse than in the initial
dataset. Despite being computed in a centralized fashion,
O’Donovan trust offers a significant loss of over 10% total
item coverage across the whole range of neighbors(15% for
range 2), as we stated in section 5.1. If we increase the
coverage to match that of our metric, the MAE in the case
of Epinions would increase to levels comparable to that of
Pearson similarity.

Once we increase the search range to 2, we notice cover-
age is very close to the baseline starting from a neighborhood
size of only 35. Even so, using a range of 2 could potentially
involve 353 nodes in a single request, for the worse case sce-
nario, which might produce significant overhead. However,
it is still less demanding and more scalable than having to
consult the ratings of every user in the network, since re-
cursive queries can be done asynchronously between nodes.
We also proposed a few ways of reducing the overhead of
recursive hops in section 3.1.2. Given the sparsity of the
dataset used for this experiment, we believe that using a
search range higher than this is unneccessary for most real-
life cases.

In the plot on the right of figure 4, we notice the effect
of increasing the search range on prediction accuracy. We
notice that both in the case of our trusts and O’Donovan
trusts, using a range of 2 yields better results than using a
range of 1. This is to be expected since there will be signif-
icantly more ratings available for the prediction phase. The
advantages of using a search range of 2 are particularly obvi-
ous in the case of the O’Donovan metric where the accuracy
is increased sensibly, significantly surpassing the centralized
approach using the same trust metric(1.02 MAE compared
to the centralized approach of 1.17). From this experiment
we can infer that choosing a range for requests will represent
a compromise between accuracy and coverage, on one side,
and overhead on the other.

Figure 5 depicts how coverage is affected by the conver-
gence of the network and by the distance metric used by the
T-Man algorithm, discussed at the beginning of the section
3. We can observe that as neighbors become more similar
to a user, coverage increases significantly. The experiment
was run on the Epinions dataset, for a neighborhood size of
60 and using a search range of 1. We notice how coverage

Figure 5: Influence of distance metric on coverage
as network converges in the case of Epinions.

is increased when using the variation of the Pearson simi-
larity mentioned in equation (1). This makes perfect sense
since taking the number of items in common between two
users into account when calculating similarity increases the
probability that highly similar users will also be interested
in similar items. Taking into account the results presented
in figure 3, we notice that our proposed variation offers bet-
ter coverage and better accuracy, as in the case of using our
proposed trust metric for rating prediction. Thus, we can
assume that our metric is overall a more desirable distance
metric to be used in the implementation of the T-Man algo-
rithm.

6. CONCLUSION AND FUTURE WORK
In this work, we have used techniques inspired from P2P

applications to create a scalable recommender system model.
We have used the T-Man algorithm to cluster similar users
together using a variation of the Pearson similarity as a dis-
tance metric. We have shown the improvements in item
coverage and accuracy the proposed variation achieves and
implemented a new trust inference method to obtain direc-
tional trust values between a user and its neighbors while
only knowing their ratings. Our inference method can com-
pute trusts between a user and any given subset of neighbors
by having them predict the user’s known ratings and modify-
ing trusts values until predictions are close to the known rat-
ings. We showed that our decentralized approach achieves
better accuracy than two popular centralized models while



maintaining comparable item coverage. Also, our trust in-
ference method in the context of our decentralized approach
performs better than using Pearson similarity and is com-
parable to the popular trust metric proposed by O’Donovan
and Smyth in [16], while being, easily applicable in a de-
centralized model, in contrast to the latter metric. We also
showed our trust metric allows for higher item coverage than
O’Donovan’s, even though the latter metric is computed cen-
trally and ours only requires a limited neighborhood.

Future work will include observing the influence of differ-
ent privacy settings of users on trust values and implement-
ing a policy for punishing users that share too few items
through lowering their trust. Also, it is worth exploring the
potential of other distance metrics for T-Man and/or pre-
diction formulae and the effectiveness of implementing our
trust metric in a centralized fashion. We are also interested
in pursuing gradient-based boosting algorithms as a possible
replacement for our trust inferrence method.
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