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ABSTRACT 

Recommending items ranked by popularity has been found to be a 

fairly competitive approach in the top-N recommendation task. In 

this paper we explore whether popularity should always be ex-

pected to be an effective approach for recommendation, and what 

causes, factors and conditions determine and explain such effec-

tiveness. We focus on two fundamental potential sources of biases 

in rating data which determine the answer to these questions: item 

discovery by users, and rating decision. We research the role of 

social communication as a major source of item discovery biases 

(and therefore rating biases). We undertake the study by defining a 

probabilistic model of such factors, and running simulations where 

we analyze the relationships between the effectiveness of populari-

ty and different configurations of social behavior. 
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1. INTRODUCTION 
Recommending items ranked by popularity has been found to be a 

fairly competitive approach in the top-N recommendation task [5]. 

It may be to some initial surprise that a trivial and non-

personalized recommendation method can be this effective, some-

what contradicting the implicit intuition underlying the recom-

mender systems field that personalized recommendations should 

have the potential to maximize overall user satisfaction, by achiev-

ing an optimal fit of users’ needs on an individual basis, as op-

posed to a one-size-fits-all approach.  

Some authors have analyzed this issue recently [8,11,12,13,14], and 

have proposed specific techniques to consider the biases in the 

distribution of missing ratings, in both the recommendation algo-

rithms and the evaluation methodology and metrics. The question 

has also been addressed from the perspective of the actual utility of 

recommendation: recommending popular items has the obvious 

shortcoming of a lack of surprise for the user, approximating (by 

definition) the worst possible results in terms of the novelty dimen-

sion [4]. Despite this obvious shortcoming, popular recommenda-

tions appear to be reasonably effective in practice (e.g. as a fallback 

option), item popularity is actually an (intentional or accidental) 

ingredient of many state of the art recommendation algorithms, and 

commercial applications seem to be using it among other signals in 

recommendation functionalities. However, we barely find in the 

literature a clear analysis of the causes and characteristics of the 

popularity biases, and the relationship between the popularity dis-

tribution and the potential consequences in the performance and 

evaluation of recommendation algorithms.  

It is natural to wonder a) whether popularity should always be 

expected to be an effective approach (or partial signal) for recom-

mendation, b) what causes, factors and conditions determine and 

explain such effectiveness, and c) whether the apparent effective-

ness actually reflects true effectiveness, or is the result of a distor-

tion of some sort in the evaluation methodologies. We address 

such questions in this paper. 

Popularity-based recommendation exploits biases in the distribu-

tion of available observed ratings among items –or equivalently, of 

the distribution of missing ratings. Thus studying the properties of 

popularity is essentially the same as studying the characteristics of 

rating distributions, and their biases. In unbiased situations (where 

ratings are uniformly distributed), popularity is equivalent to ran-

dom recommendation and makes no particular sense as a recom-

mendation strategy. Popularity therefore makes sense when rating 

data is biased or, in other words, missing not at random [7,11].  

In this paper we focus on two fundamental potential sources of 

biases in rating data: item discovery biases, and rating decision 

biases. The latter refers to the factors that determine whether or not 

a user decides to rate an item he has interacted with; for instance, 

in many cases users may be typically more prone to rate items they 

have liked than items they have not liked. The former refers to the 

fact that in order to be rated by a user, the user needs first to be-

come aware that the item exists. Biases in item discovery distribu-

tion then naturally result in biases in the items that ultimately get 

more ratings or less. 

Discovery biases are determined by the sources by which users 

discover items. People get to know items through a variety of 

channels such as direct user searches, advertisement from provid-

ers, random encounter, suggestions from a recommender system, 

etc. Beyond this and foremost, our social environment is a key 

source of information and discovery for which people have a par-

ticular reliance and trust compared to other channels. The perspec-

tive of the role word of mouth has in the distribution of ratings 

connects the problem at hand to an issue of network propagation: 

the items that propagate faster and farther in the social network 

will tend to get more ratings. 

Propagation phenomena have been extensively studied in the area 

of complex networks, and social networks in particular (for diseas-

es, rumors, viral effects, etc.) [1,6,9,10], but with scarce exceptions 

[3] the connection to biases in user rating distribution have been 

barely examined before. Yet we find that network effects can be a 

major explanatory factor for recommendation data biases and 

popularity effects. 

In this paper we address this perspective. We posit in particular the 

following potential key factors in creating popularity biases, de-

termining whether popularity becomes or not a good strategy to 

achieve recommendation effectiveness: 

 User behavior in their communication with peers, in particular 

the biases towards positive or negative experiences when shar-

ing one’s experiences with others, and the overall frequency 

with which users intercommunicate in social networks. 
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 User behavior in rating decisions, in particular, biases towards 

rating positive or negative experiences. 

 Social network structure, in particular link density and cluster-

ing structure. 

We undertake this study by representing the involved factors in a 

probabilistic model defined by random variables subject to inter-

dependent distributions. Based on the model, the problem can be 

approached, complementarily, by a formal analysis, or by empiri-

cal observation through simulations. In this paper we pursue the 

latter path. We identify the key variables, parameters and depend-

encies describing the factors we aim to focus on and we explore, 

through simulation based on the proposed model, the resulting 

effects on the effectiveness of popularity, aiming to identify differ-

ent situations and uncover potential explanations thereof. 

2. A SOCIAL RATING GENERATION 

MODEL 
We start our analysis by formalizing the fundamental actions, 

events and variables involved in the rating generation process, 

upon which we will formally identify and formalize the key factors 

for the phenomena we aim to observe (user behavior trends and 

related network processes), and their relations to resulting effects 

(data biases and effectiveness variations in popularity-based rec-

ommendation), in the form of probabilistic dependencies and 

model parameters. 

In order to generate input data for an item, a user needs to become 

aware that the item exists, decide to interact with the item, and then 

decide to rate it. Popularity biases in recommender system input 

data can be therefore related to two main factors: a) biases in the 

items that users discover: some items become known to many 

more users than others; and b) biases in the items that users decide 

to rate (or consume or interact with): once a user experiences an 

item, there may be some systematic reason why users decide to 

rate certain items and not others.  

The primary necessary steps by which a rating value is generated 

can be thus identified as follows: 

1. A user discovers an item, i.e. he becomes aware that the item 

exists. 

2. The user decides to interact with (consume, click, play, etc.) 

the item. 

3. The user decides to rate the item. 

Moreover, in a social environment, we consider an additional 

relevant action by users on items: 

4. The user shares with some of his friends his experience with 

the item. This brings to step 1 (discovery) each person in-

formed by the user about the item. 

The distinction between steps 2 and 3 is not a clear cut or simply 

inexistent in common applications, where users do not enter ex-

plicit ratings, and user-item interaction data are used as input in-

stead by recommendation algorithms; for this reason and the sake 

of simplicity we shall ignore the difference in our model. 

These steps thus create a cycle by which users become aware of 

items or, from the item perspective, items progressively traverse 

the social network of users, becoming known to the users they 

come across, and becoming rated by some of them. How far and 

what regions an item reaches in the network depends on the intrin-

sic communication patterns of users in the network, the depend-

ence of the latter on characteristics of the items, and the shape and 

connectivity of the network, which is known to affect the devel-

opment of network propagation phenomena [6]. 

2.1 Random variables and parameters 
We formally model the described process in terms of a set of bina-

ry random variables defined upon different sample spaces combin-

ing the set 𝒰 of all users, the set ℐ of all items, and the set 𝒯 of all 

time points we may consider in the model, as follows: 

 Rating: 𝑟𝑎𝑡𝑒𝑑: ℐ × 𝒰 × 𝒯 → {0,1} takes value 1 for a sampled 

element (𝑖, 𝑢, 𝑡) if user 𝑢 ∈ 𝒰 has rated item 𝑖 ∈ ℐ by or before 

time 𝑡 ∈ 𝒯, and 0 otherwise. 

 Relevance: 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡: ℐ × 𝒰 → {0,1} takes value 1 if the sam-

pled user likes the sampled item, and 0 otherwise. Notice that 

this variable is not observed unless it becomes visible to the 

system when the user rates the item. Note also that we assume 

as a simplification that relevance is a static condition and does 

not change with time or context. 

 Discovery: 𝑠𝑒𝑒𝑛: ℐ × 𝒰 × 𝒯 → {0,1} is 1 if the user is aware 

the item exists by or before the time point at hand, and 0 oth-

erwise. The same as relevance, this variable is not observed un-

less a user rates an item, in which case we know he must have 

seen it to begin with.  

As mentioned before, we ignore the distinction between know-

ing an item exists (e.g. we have seen a movie title on a bill-

board), and actually experiencing the item (e.g. we actually 

watch the movie). The difference can be worth being consid-

ered as it involves a decision on the part of the user, but it is 

not required for the focus of our present analysis. 

 Communication: 𝑡𝑒𝑙𝑙: 𝒰 × ℐ × 𝒰 × 𝒯 → {0,1} is 1 if a user 

tells a given friend about a given item at a given time when 

both friends talk to each other, and 0 otherwise.  

We consider that users only share experiences with people they 

are connected with in a social network. This does not involve 

any loss of generality, as we do not make any assumption on 

the nature of the network at this point. The simplifying re-

striction will be made in our experiments, where we will use or 

simulate specific social network structures and assume (as a 

simplification) they embody full knowledge of all connections 

between users. 

The key distributions and dependencies which capture the relevant 

factors in the behavior of the defined model can be expressed in 

terms of conditional probabilities. We would mainly foresee two 

such key dependencies: the propensity of users to rate items they 

like vs. items they do not like, and their inclination to share posi-

tive vs. negative experiences. This can be expressed by four condi-

tional distributions:  

𝑝(𝑡𝑒𝑙𝑙|𝑠𝑒𝑒𝑛, 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡, 𝑢, 𝑖, 𝑣, 𝑡) 

𝑝(𝑡𝑒𝑙𝑙|𝑠𝑒𝑒𝑛, ¬𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡, 𝑢, 𝑖, 𝑣, 𝑡) 

𝑝(𝑟𝑎𝑡𝑒𝑑|𝑠𝑒𝑒𝑛, 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡, 𝑖, 𝑢, 𝑡) 

𝑝(𝑟𝑎𝑡𝑒𝑑|𝑠𝑒𝑒𝑛, ¬𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡, 𝑖, 𝑢, 𝑡)  

If we make the simplifying assumption that the decision to rate and 

share mainly depends on the relevance of the item, and we ignore 

for a moment the differences between users in this respect, as well 

as the possible variations in user behavior over time, we may 

consider the approximation 𝑝(𝑡𝑒𝑙𝑙|𝑠𝑒𝑒𝑛, 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡, 𝑖, 𝑢, 𝑡) ∼
𝑝(𝑡𝑒𝑙𝑙|𝑠𝑒𝑒𝑛, 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡) –and the same for the other four distribu-

tions– in such a way that we have four conditional probabilities 

defining two behavioral dimensions, which may act as configura-

tion parameters of the model: 

 Communication/relevance bias: 𝑝(𝑡𝑒𝑙𝑙|𝑠𝑒𝑒𝑛, 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡) and 

𝑝(𝑡𝑒𝑙𝑙|𝑠𝑒𝑒𝑛, ¬𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡). 

 Rating/relevance bias: 𝑝(𝑟𝑎𝑡𝑒𝑑|𝑠𝑒𝑒𝑛, 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡) and 

𝑝(𝑟𝑎𝑡𝑒𝑑|𝑠𝑒𝑒𝑛, ¬𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡). 



We are interested in studying how these parameters affect the effec-

tiveness of popularity-based recommendation. For that purpose, we 

shall simulate an environment the dynamics of which are based on 

the proposed model, run recommendations in that environment using 

the generated ratings, and measure their effectiveness according to 

the simulated data. The model defines a few rules that changes of 

state in the environment should be governed by, but in order to 

simulate the environment dynamics we need to define a set of trig-

gering actions and events, and the order in which they take place. 

2.2 Model dynamics 
We consider the following simplified scenario that represents how 

items may become known to users and eventually rated. We have a 

population of users and a set of items. Based on the model defined 

in the previous subsection, user-item pairs undergo a sequence of 

states, from unknown to discovered to rated, in this order, where 

the two latter states may or may not be ever reached. Items are 

discovered by users through friends: at certain points in time, users 

choose a friend and an item they have discovered, and decide 

whether or not to tell the friend about the item. If communication 

takes place, the friend discovers the item the user talks about (if he 

had not discovered the item already). Communication takes place 

as a dialog, which means that the friend will in turn choose some 

discovered item and (under the same relevance-based communica-

tion probability pattern) talk back about it to the first user, who 

will then discover this item. In our chosen configuration, users talk 

about an item on their own initiative only once at most, but they 

can talk about it any number of times when asked. 

Users thus discover items by communication through the social 

network. However, initially all items are unknown to all users. In 

order to bootstrap the system, we may either define an initial state 

where an arbitrary set of user-item pairs are in the discovered state 

(e.g. 𝑛 random users have discovered each item), or we include an 

additional discovery source, extrinsic to the social network, through 

which items may also become known. In our current implementation 

we choose the second option. The source may represent e.g. catalog 

browsing and searching, item advertisement, etc., and can be imple-

mented as random sampling (as slow and infrequent as we would 

desire with respect to the overall simulation time flow) of user-item 

pairs for discovery, or biased sampling by some arbitrary distribu-

tion, or even a recommender system. In our case we choose random 

sampling by a ratio of 0.1% of the simulation time step (that is, on 

average every 1 out of 1,000 simulation steps, users discover an item 

at random with replacement –i.e. we do not force the sampled item 

to be unknown and it may have been discovered already). 

The decision to rate items and to share the experience with friends 

can be required of the simulated users in different ways and order. 

As a simplification, the decision to rate an item or not is made at the 

time when the user discovers the item. If the user does not rate it, the 

decision is not reconsidered anymore. Regarding communication, in 

our chosen configuration each user is given a chance to talk about an 

item to a friend once every simulation time unit –or inversely, the 

time unit is defined as an iteration where every user is given the 

chance to speak to a friend. The item is chosen uniformly at random 

(without replacement if the user took the initiative) among the ones 

the user has discovered, and the friend is sampled uniformly at ran-

dom (with replacement) from all the user’s social contacts.  

The rating and sharing decisions, when the user is faced to them as 

explained in the previous paragraph, are taken based on the proba-

bilistic model described in the previous subsection. That is, when a 

user discovers an item, he will rate it with probability 

𝑝(𝑟𝑎𝑡𝑒𝑑|𝑠𝑒𝑒𝑛, 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡) if the user likes the item, and with 

probability 𝑝(𝑟𝑎𝑡𝑒𝑑|𝑠𝑒𝑒𝑛, ¬𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡) if he does not. Analogous-

ly, the decision to talk or not to a friend about an item is taken 

(once the friend and the item have been sampled) according to 

𝑝(𝑡𝑒𝑙𝑙|𝑠𝑒𝑒𝑛, 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡) if the user likes the item, and 

𝑝(𝑡𝑒𝑙𝑙|𝑠𝑒𝑒𝑛, ¬𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡) if he does not. 

In order to carry out the above simulated actions, it is apparent that 

we should know whether a given user likes a given item at the time 

when this determines the probabilities of the user’s decisions. 

Relevance is in general an unobserved variable for the system 

(until a user rates an item) and for the user himself (until he dis-

covers an item). We deal with this lack of observation by simulat-

ing relevance knowledge as a certain user-item relevance distribu-

tion. This knowledge will remain hidden to the system (in particu-

lar to the recommender systems we will run in our experiments), 

but will be made “visible” to a) the simulated users when they 

discover an item, and b) the computation of recommendation 

effectiveness metrics, as we will explain shortly. 

Our model does not make any assumption about the relevance distri-

bution, but in our experiments, we assume the number of users who 

like an item (which is equal to 𝑝(𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡|𝑖) multiplied by the 

number of users) has a long-tail distribution shape. This is an arbi-

trary decision in our work at this point, which could be contrasted by 

means of a poll of some kind in a real setting. It does not seem to be 

a critical aspect of the model in our simulations though. In order to 

obtain the long tail shape we use an adjusted power law defined by 

𝑝𝛼(𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡|𝑖𝑘) = 𝑐1 + 𝛽(𝑘 + 𝑐2)−𝛼 for the 𝑘-th most liked item. 

The parameter 𝛼 ∈ [0, ∞) defines the steepness of the relevance 

distribution, where 𝛼 = 0 gives a uniform distribution. We adjust the 

remaining parameters 𝑐1, 𝑐2 and 𝛽 in such a way that –we omit the 

details– the distribution adheres to a given prior 𝑝(𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡), and 

the extremes of the curve for the most and least liked users (𝑖1 and 

𝑖|ℐ|) behave as one would expect, that is: lim
𝛼→∞

𝑝𝛼(𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡|𝑖1) = 1, 

lim
𝛼→∞

𝑝𝛼(𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡|𝑖|ℐ|) = 0, lim
𝛼→0

𝑝𝛼(𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡|𝑖1) = 

lim
𝛼→0

𝑝𝛼(𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡|𝑖|ℐ|) = 𝑝(𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡). Figure 1 shows the shape of 

the curve for 𝛼 = 1 and 𝑝(𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡) = 0.2 with 3700 items. 

Given a distribution thus defined, we generate the sequence of the 

number of users who like each item, and we assign this number 

randomly to the items. Then for each item, we assign the corre-

sponding number of users liking the item by randomly sampling 

the users. We thus create a scenario where each user likes a set of 

items beforehand, although he does not know he likes an item until 

he discovers it. If the user rates the item, the system will also know 

whether or not the user likes it: if he does, the rating value will be 

Figure 1. Simulated relevance distribution for 𝜶 = 𝟏 with 

prior 𝒑(𝒓𝒆𝒍𝒆𝒗𝒂𝒏𝒕) = 𝟎. 𝟐 for 𝟑𝟕𝟎𝟎 items. Items are sorted 

from most to least liked in the 𝒙 axis, and the line represents 

the ratio of users who like each item.  
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positive, and negative otherwise. We thus consider as a simplifica-

tion that relevance is an immutable condition which does not 

change with time nor context. 

3. ITEM POPULARITY RECOMMENDA-

TION AND ITS EFFECTIVENESS 
Before we get into the empirical analysis of popularity effectiveness, 

we cast precise definitions of popularity and the metrics to assess its 

effectiveness in recommendation. In the usual definition of populari-

ty-based recommendation one finds in the literature, items are ranked 

by their total number of ratings, regardless of whether the rating 

values express a positive or negative preference [5]. Given the role 

of relevance we are analyzing in our model, we find it worthy to also 

consider a variant of popularity recommendation where only positive 

ratings are considered. We therefore study both variants in our ex-

periments, the scoring functions of which are defined as: 

Simple popularity: 𝑠(𝑢, 𝑖) = |{𝑣 ∈ 𝒰|𝑟(𝑣, 𝑖) ≠ ∅}| 

Relevant popularity: 𝑠(𝑢, 𝑖) = |{𝑣 ∈ 𝒰|𝑟(𝑣, 𝑖) ≥ 𝜏}| 

where 𝑟(𝑣, 𝑖)  is the rating assigned to 𝑖 by 𝑣, and 𝜏 is the threshold 

value at or above which the rating expresses a positive preference.  

As a metric of recommendation effectiveness we shall take preci-

sion 𝑃@𝑘, which is a simple to compute and analyze yet repre-

sentative metric. We shall distinguish between the observed preci-

sion 𝑃𝑜𝑏𝑠, in which a recommended item is considered relevant if it 

has been rated by the target user with a positive value, and true 

precision 𝑃𝑡𝑟𝑢𝑒, in which we use all the simulated relevance 

knowledge, including that which has not become known to the 

system in the form of ratings:   

𝑃𝑜𝑏𝑠@𝑘 = avg
𝑢∈𝒰

|{𝑖 ∈ 𝑅𝑢
𝑘|𝑟(𝑢, 𝑖) ≥ 𝜏}| 𝑘⁄  

𝑃𝑡𝑟𝑢𝑒@𝑘 = avg
𝑢∈𝒰

|{𝑖 ∈ 𝑅𝑢
𝑘|𝑢 likes 𝑖}| 𝑘⁄  

where 𝑅𝑢
𝑘 is the set of top 𝑘 items recommended to 𝑢. Naturally 𝑃𝑜𝑏𝑠 

is what offline experimental evaluations commonly report. This will 

allow us to contrast precision as it is usually measured in offline 

recommender system experiments, to the true precision defined by 

the full underlying user preferences which have determined the 

generation of ratings and their distribution in our model.  

4. SIMULATION-BASED EMPIRICAL OB-

SERVATIONS 
The proposed model allows representing different user behavior 

patterns by different model configurations using different parame-

ter settings. In order to analyze the effect that such configurations 

produce on the effectiveness of popularity-based recommendation, 

we implement a simulation framework that runs the model dynam-

ics described in the previous section. The framework supports the 

integration of an arbitrary set of recommendation algorithms by 

just having them adhere to a simple abstract API. At each simula-

tion time step, the framework generates a temporal split of rating 

data with a 0.5/0.5 ratio of training/test data, runs all the recom-

mendation algorithms, and evaluates the observed and true preci-

sion for each of them. This way we can monitor how the perfor-

mance of recommenders evolves along the simulation. For the 

focus of the present paper we only observe three recommenders: 

popularity, relevant popularity, and random. 

The basic research questions we aim to shed light on in our exper-

iments are the following: 

RQ1. How does the observed and true precision of popularity-

based recommendation depend on the users’ social commu-

nication patterns, and in particular the bias towards sharing 

positive vs. negative experiences? 

RQ2. How does the observed and true precision of popularity-

based recommendation depend on the user bias towards rat-

ing liked vs. non-liked items? 

RQ3. Can certain social network characteristics and effects (such 

as its topology and viral phenomena) alter the dependencies 

between user behavior and popularity precision? 

RQ4. May the observed and true precision disagree in terms of 

how popularity compares to random recommendation, as a 

consequence of particular social behavior patterns? 

4.1 Experimental setup 
For most of the observations we report next, we use the social net-

work data from Facebook made available by J. Leskovec [9], con-

taining 88,234 social connections among 4,039 users. Taking inspi-

ration on the order of scale of MovieLens 1M, we take a total set of 

3,700 items. We simulate a relevance distribution with prior 

𝑝(𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡) = 0.2 and steepness 𝛼 = 1, which results in the distri-

bution shown earlier in Figure 1. For discovery bootstrapping, in 

addition to word of mouth, users discover an item at random 1 out of 

every 1,000 simulation steps. We run all simulations until 500,000 

ratings have been generated, which is half the size of MovieLens 

1M. The reason for not running the simulations longer is to avoid the 

distorting saturation effects that eventually start to appear as a con-

sequence of the implicit closed world assumption involved in having 

a fixed set of users and items all along. E.g. in the limit all users end 

up consuming and/or sharing most items regardless of their prefer-

ences and behavior patterns, just by reason of exhaustion of any 

better remaining option. In the results we present here, we run each 

simulation only once, in order to show how the observed patterns 

can be perceived even without averaging random effects (having 

informally checked that the variation is moderate when averaging). 

In order to study the effects of the relevance biases in sharing and 

rating user behavior, we shall fix certain parameters and observe 

the variation of popularity precision as we vary the others.  

4.2 Communication/relevance bias 
To isolate the effect of communication biases, we take a relevance-

neutral rating behavior by (𝑟𝑎𝑡𝑒𝑑|𝑠𝑒𝑒𝑛, 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡) =
𝑝(𝑟𝑎𝑡𝑒𝑑|𝑠𝑒𝑒𝑛, ¬𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡) = 1, that is, users always rate all 

items they discover. Then, we shall vary 𝑝(𝑡𝑒𝑙𝑙|𝑠𝑒𝑒𝑛, 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡), 

𝑝(𝑡𝑒𝑙𝑙|𝑠𝑒𝑒𝑛, ¬𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡) and the prior 𝑝(𝑡𝑒𝑙𝑙|𝑠𝑒𝑒𝑛) as we explain 

next. 

 𝒑(𝒓𝒆𝒍𝒆𝒗𝒂𝒏𝒕|𝒔𝒆𝒆𝒏) 

  

Figure 2. Discovery/relevance bias caused by communication/ 

relevance biases. The color scale on the color map and the 𝒚 

axis on the graphic on represent 𝒑(𝒓𝒆𝒍𝒆𝒗𝒂𝒏𝒕|𝒔𝒆𝒆𝒏), blue be-

ing the maximum and red the minimum value. Note that the 

curve for 𝒑(𝒕𝒆𝒍𝒍|𝒔𝒆𝒆𝒏) = 𝟎. 𝟗 has no values for 

𝒑(𝒕𝒆𝒍𝒍|𝒔𝒆𝒆𝒏, 𝒓𝒆𝒍𝒆𝒗𝒂𝒏𝒕) < 𝟎. 𝟓, as it is not possible to reach 

such a high prior with lower sharing probabilities on relevant 

items. Likewise, 𝒑(𝒕𝒆𝒍𝒍|𝒔𝒆𝒆𝒏) = 𝟎. 𝟏 has no points for 

𝒑(𝒕𝒆𝒍𝒍|𝒔𝒆𝒆𝒏, 𝒓𝒆𝒍𝒆𝒗𝒂𝒏𝒕) > 𝟎. 𝟓. 
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4.2.1 Discovery/relevance bias 
Before analyzing how the relevance-sharing biases affect popularity 

precision, we check a simple hypothesis that sharing biases result in 

approximately equivalent discovery biases. This is not as obvious as 

it might seem, as the fact that people speak about what they like (a 

relevance bias in communication) does not necessarily imply those 

who listen like it as well (a relevance bias in discovery). 

Figure 2 shows how the communication/relevance bias results in a 

discovery bias in terms of the ratio of discovered items that are liked 

by the users who have discovered them, as expressed by 

𝑝(𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡|𝑠𝑒𝑒𝑛). The figure presents the results in two ways: in 

the color map on the left, we vary 𝑝(𝑡𝑒𝑙𝑙|𝑠𝑒𝑒𝑛, 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡) and 

𝑝(𝑡𝑒𝑙𝑙|𝑠𝑒𝑒𝑛, ¬𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡) from 0 to 1 by increments of 0.1, and we 

show the resulting 𝑝(𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡|𝑠𝑒𝑒𝑛) in a color scale, where blue is 

the maximum value and red is the minimum. We see that there is 

indeed an almost direct relation in the bias towards relevance in 

discovery and network communication. The right graphic provides a 

complementary view of this trend, where each line corresponds to a 

value of 𝑝(𝑡𝑒𝑙𝑙|𝑠𝑒𝑒𝑛), the 𝑥 axis is 𝑝(𝑡𝑒𝑙𝑙|𝑠𝑒𝑒𝑛, 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡), and the 

𝑦 axis is the resulting 𝑝(𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡|𝑠𝑒𝑒𝑛). Again, we see that the 

discovery/relevance bias grows with the sharing/relevance bias: the 

curves have monotonic growth with 𝑝(𝑡𝑒𝑙𝑙|𝑠𝑒𝑒𝑛, 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡).  

This correspondence between biases is not necessarily trivial, as we 

just noted earlier. The explanation is that, intuitively, in a relevance-

prone sharing situation, items that many users like find more paths 

with high traversal probability (through connected friends who all 

like the item), and will therefore travel farther than items fewer users 

like, whereby more-liked items become discovered by more users. 

4.2.2 Effect on popularity 
We now check the effect of communication biases on popularity 

precision. We do so by the same parameter settings as we just did. 

Figure 3 shows the effects for the two variants of popularity-based 

recommendation described in section 3 (simple popularity on the top 

and relevant popularity at the bottom), in terms both the observed 

(left block) and true (right block) precision –more specifically, the 

difference between the precision of popularity and random recom-

mendation. Similarly to Figure 2, for each popularity / precision 

variant we display a) a color map where the color scale shows the 

evolution of precision with respect to the user propensity to rate liked 

and non-liked items, and b) a graphic with a set of curves showing 

how precision evolves with the propensity to share liked items for a 

fixed amount of global communication 𝑝(𝑡𝑒𝑙𝑙|𝑠𝑒𝑒𝑛) on each curve.  

We see that popularity is in general better than random recommenda-

tion in most configurations, variants and metrics. However, we see 

that we may not take this for granted in all cases, and popularity 

becomes a worse than random approach in some circumstances. 

Comparing the graphics of true and observed precision, we see that 

the latter shows much lower values than the former. This is because 

observed precision only counts observed relevance in the form of 

ratings, which is a fraction of the total relevance that true precision 

takes into account –we are just reproducing the well-known fact that 

observed precision is a lower bound of true precision [7]. We may 

also observe that relevant popularity is generally a better option than 

simple popularity, as one would anticipate. We also see at first sight 

that the effects of the communication biases on the two popularity 

variants are almost the same in terms of observed precision, whereas 

they differ in terms of true precision, as we shall discuss next.  
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Figure 3. Effect of the communication/relevance biases on popularity-based recommendation precision. We show both the observed (left 

block) and true (right block) precision on two item popularity variants: ranking by the total number of ratings (simple popularity, top), 

and ranking by the number of positive ratings (relevant popularity, bottom). The precision values are actually shown as the difference 

to the precision of random recommendation. For each recmmender/metric combination, a color map shows the resulting precision 

values (blue being the maximum and red the minimum value) for the corresponding values of 𝒑(𝒕𝒆𝒍𝒍|𝒔𝒆𝒆𝒏, 𝒓𝒆𝒍𝒆𝒗𝒂𝒏𝒕) and 

𝒑(𝒕𝒆𝒍𝒍|𝒔𝒆𝒆𝒏, ¬𝒓𝒆𝒍𝒆𝒗𝒂𝒏𝒕). The (𝟎, 𝟎) cell is left empty as no communication takes place in such a setting. Next to each color map, a 

graphic shows a curve for each value of the prior 𝒑(𝒕𝒆𝒍𝒍|𝒔𝒆𝒆𝒏) from 𝟎. 𝟏 to 𝟎. 𝟗 with 𝒑(𝒕𝒆𝒍𝒍|𝒔𝒆𝒆𝒏, 𝒓𝒆𝒍𝒆𝒗𝒂𝒏𝒕) in the 𝒙 axis, and the 

difference to random precision in the 𝒚 axis. The same as in Figure 2 and for the same reason, the curves for 𝒑(𝒕𝒆𝒍𝒍|𝒔𝒆𝒆𝒏) = 𝟎. 𝟗 have 

no values for 𝒑(𝒕𝒆𝒍𝒍|𝒔𝒆𝒆𝒏, 𝒓𝒆𝒍𝒆𝒗𝒂𝒏𝒕) < 𝟎. 𝟓, and 𝒑(𝒕𝒆𝒍𝒍|𝒔𝒆𝒆𝒏) = 𝟎. 𝟏 have no points for 𝒑(𝒕𝒆𝒍𝒍|𝒔𝒆𝒆𝒏, 𝒓𝒆𝒍𝒆𝒗𝒂𝒏𝒕) > 𝟎. 𝟓. 
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As a general trend, we see that popularity is more effective (in both 

variants and metrics) when users are prone to share items they like: 

all the rows of all the maps display a monotonic growth left to right, 

and all the curves in the graphics also show a steady growing trend. 

In terms of observed precision this is just natural: for a given num-

ber of total ratings (our simulation stopping condition), the number 

of positive ratings gets higher if discovery is biased towards liked 

items, and the difference to random precision is roughly proportion-

al to the positive ratings density, for statistical reasons.  

In true precision, the trend is explained because in a relevance-

biased communication, the number of relevant and total ratings of 

each item will correlate with the number of users who like each 

item. Thereby liked items become statistically more popular, caus-

ing an increase in the resulting true popularity precision. In the 

opposite case, sharing items users do not like is counterproductive 

for popularity, because the generated ratings mislead the recom-

mendation: the items with most ratings (predominantly negative) 

are not liked by many users, yet they get recommended by popular-

ity. Simple popularity is particularly vulnerable to this, as it does 

not distinguish between positive and negative ratings. This popu-

larity variant seems to be essentially sensitive to just whether 

𝑝(𝑡𝑒𝑙𝑙|𝑠𝑒𝑒𝑛, 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡) > 𝑝(𝑡𝑒𝑙𝑙|𝑠𝑒𝑒𝑛, ¬𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡) or the oppo-

site. Once the inequality leans clearly enough to either side, preci-

sion does not vary much further, as we can see by the rather uni-

form colors in the triangular sections above and below the diagonal 

in the color map. In fact (though we do not show this information in 

the figure) the red and blue cells mostly correspond to negative and 

positive values respectively in this particular color map (i.e. preci-

sion is below or above random on each side of the diagonal).  

Relevant popularity on the other hand is more robust: it is almost 

insensitive to the relevance bias for 𝑝(𝑡𝑒𝑙𝑙|𝑠𝑒𝑒𝑛) < 0.5 –the preci-

sion curves run almost constant and high with respect to 

𝑝(𝑡𝑒𝑙𝑙|𝑠𝑒𝑒𝑛, 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡) for such low levels of global communica-

tion. This makes sense because once popularity can correctly identi-

fy the relevant items by correlation with positive ratings, it does not 

matter how much rating information the recommendation is using 

for the prediction –the ratings do not count on the true precision 

computation, but just the full true relevance. Even in some regions 

where 𝑝(𝑡𝑒𝑙𝑙|𝑠𝑒𝑒𝑛, 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡) < 𝑝(𝑡𝑒𝑙𝑙|𝑠𝑒𝑒𝑛, ¬𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡), true 

precision is good because negative ratings are ignored by this vari-

ant. However, sharing non-liked items beyond a certain degree does 

hurt relevant popularity: we see a strong decreasing trend in the 

color map columns. This happens because items which are not liked 

by that many users get enough positive ratings (corresponding to the 

few users who do like the items) to surpass highly liked items for 

which relevance remains more unobserved. 

The trends on negative communication display some nuances in 

observed precision, where at some points sharing negative experi-

ences seems to improve the measured precision of popularity. We 

hypothesize that this is due to the fact that when an item is shared, 

it may be liked by the receiver even if the sharer did not like it. 

Once negative discovery is saturated, further negative sharing may 

cause a slight relative raise in positive discovery (and therefore 

positive ratings), as we see in the color maps for 

𝑝(𝑡𝑒𝑙𝑙|𝑠𝑒𝑒𝑛, 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡) < 0.5 in observed precision. We can also 

see that more communication results in better observed precision 

in the curves of the graphics (darker curves run above lighter 

ones). The trade-off between negative communication and total 

communication explains the “mix of diagonal trends” in the color 

maps in observed precision. 

4.3 Rating/relevance bias 
In order to study the effect of the rating bias on popularity recom-

mendation, we take fixed neutral values for the communication 

biases 𝑝(𝑡𝑒𝑙𝑙|𝑠𝑒𝑒𝑛, 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡) = 𝑝(𝑡𝑒𝑙𝑙|𝑠𝑒𝑒𝑛, ¬𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡) = 1, 

that is, users share with their friends all the items they find. In this 

setting, we vary 𝑝(𝑟𝑎𝑡𝑒𝑑|𝑠𝑒𝑒𝑛, 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡) and analyze the result-

ing curves for fixed values of 𝑝(𝑟𝑎𝑡𝑒𝑑|𝑠𝑒𝑒𝑛).  

Figure 4a shows the result. The first obvious trend is that observed 

popularity grows with the bias towards rating relevant items. This 

is because for a fixed total number of generated ratings (the 

simulation stopping condition), the number of positive ratings 
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Figure 4. Effect of the rating/relevance bias on popularity precision. The relation between popularity precision and rating biases is 

shown for two different scenarios: a) intense communication (left) with 𝒑(𝒕𝒆𝒍𝒍|𝒔𝒆𝒆𝒏, 𝒓𝒆𝒍𝒆𝒗𝒂𝒏𝒕) = 𝒑(𝒕𝒆𝒍𝒍|𝒔𝒆𝒆𝒏, ¬𝒓𝒆𝒍𝒆𝒗𝒂𝒏𝒕) = 𝟏 

and b) moderate communication (right) with 𝒑(𝒕𝒆𝒍𝒍|𝒔𝒆𝒆𝒏, 𝒓𝒆𝒍𝒆𝒗𝒂𝒏𝒕) = 𝒑(𝒕𝒆𝒍𝒍|𝒔𝒆𝒆𝒏, ¬𝒓𝒆𝒍𝒆𝒗𝒂𝒏𝒕) = 𝟎. 𝟑𝟔. Similarly to Figures 2 

and 3, the curves at 𝒑(𝒓𝒂𝒕𝒆𝒅|𝒔𝒆𝒆𝒏) = 𝟎. 𝟗 are truncated because it is not possible to have 𝒑(𝒓𝒂𝒕𝒆𝒅|𝒔𝒆𝒆𝒏, 𝒓𝒆𝒍𝒆𝒗𝒂𝒏𝒕) < 𝟎. 𝟓 for 

such a high rating prior, and same for 𝒑(𝒓𝒂𝒕𝒆𝒅|𝒔𝒆𝒆𝒏, 𝒓𝒆𝒍𝒆𝒗𝒂𝒏𝒕) > 𝟎. 𝟓 on 𝒑(𝒓𝒂𝒕𝒆𝒅|𝒔𝒆𝒆𝒏) = 𝟎. 𝟏. 
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increases with that bias. And as pointed out earlier, this statistically 

increases the difference to random precision by roughly the 

positive rating density. 

This effect is not observed in true precision. In fact, and quite 

paradoxically, the true precision of relevant popularity degrades 

with the positive rating bias (the curves display a decreasing 

trend). This is explained by a non-trivial interaction between a 

viral network effect and the recommendation protocol. The 

communication setting in these experiments is of extreme 

diffusion, since users always decide to share items every time they 

get a turn. Thus the first items to be found, by chance of exogenous 

discovery by some user, spread quickly through the network and 

accumulate a comparatively high number of ratings. The 

recommendation protocol mandates that users not be 

recommended items they have already rated themselves. This 

means that early rated items will be excluded from 

recommendations of more target users, as they got more ratings 

earlier. As 𝑝(𝑟𝑎𝑡𝑒𝑑|𝑠𝑒𝑒𝑛, 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡) grows, generated ratings lean 

towards items with high 𝑝(𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡|𝑖). Thus the items excluded 

more often in the protocol will tend to be the most relevant ones, 

whereby true relevance decreases for statistical reasons: a decrease 

of the effective relevance density in the set of candidate items. 

4.4 Network effects 
As we have seen, in addition to the effect of individual users’ 

behavior, further network effects may emerge from social-level 

dynamics, which end up affecting popularity. In order to complete 

the observation of viral effects just discussed in the previous sec-

tion, we repeat the same experiments with lower communication 

rates 𝑝(𝑡𝑒𝑙𝑙|𝑠𝑒𝑒𝑛, 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡) = 𝑝(𝑡𝑒𝑙𝑙|𝑠𝑒𝑒𝑛, ¬𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡) = 0.36, 

which produces a positive rating distribution similar to MovieLens 

1M –we omit the details about this for the sake of space.  

Figure 4b shows the results. We see that the paradoxical effect of the 

positive rating bias in the true precision of relevant popularity disap-

pears. Now in fact there is no dependence on the bias, as one should 

expect since relevant popularity ignores negative ratings, true preci-

sion ignores all ratings, and the correlation between relevance and 

positive ratings –which determines the effectiveness of relevant 

popularity– is achieved as soon as sufficient (a small number of) 

positive ratings have been generated. The exclusion of rated items is 

not that badly biased against relevant items because discovery being 

more evenly distributed, the generated ratings are not extremely 

skewed towards relevant items as before with viral propagation, and 

these “good items” are thus excluded from fewer recommendations.  

The true precision of simple popularity does depend on the ratio of 

positive vs. negative ratings, and this is clearly shown in the corre-

sponding graphic, where in fact precision steps up as soon as 

𝑝(𝑟𝑎𝑡𝑒𝑑|𝑠𝑒𝑒𝑛, 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡) > 𝑝(𝑟𝑎𝑡𝑒𝑑|𝑠𝑒𝑒𝑛, ¬𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡).  

We also examine whether the network structure can be a factor in 

the observed dynamics. For this purpose, we run the same simula-

tion on a Barabási-Albert (BA) graph [2] with the same number of 

users and friendship links as in the Facebook (FB) dataset. We take 

a simple configuration with 𝑝(𝑡𝑒𝑙𝑙|𝑠𝑒𝑒𝑛, 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡) =
𝑝(𝑡𝑒𝑙𝑙|𝑠𝑒𝑒𝑛, ¬𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡) = 1, 𝑝(𝑟𝑎𝑡𝑒𝑑|𝑠𝑒𝑒𝑛, 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡) = 1 and 

𝑝(𝑟𝑎𝑡𝑒𝑑|𝑠𝑒𝑒𝑛, ¬𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡) = 0, that is, users share everything 

they discover, and rate only what they like. 

Figure 5 shows the difference in the distribution of discovery and 

positive ratings on each graph. Discovery is steeper in BA than FB, 

with the best known items been discovered by almost all users, and 

the least known been discovered by almost none. Discovery is 

neutral with respect to relevance in this configuration (hence the 

green and red plots do not show correlation). The positive rating 

distribution correlates with discovery because the more an item is 

discovered the more chances it gets to be rated. It also correlates 

with relevance, because of the rating-relevance bias configuration. 

Figure 6 shows the effect of this in the resulting precision. The 

results do not differ significantly between the two types of graphs, 

except mainly for the true precision of relevant popularity, which 

is good on FB, but close to random on BA. This is because infor-

mation travels faster on the preferential attachment model of BA 

and the viral effect hurts true precision, whereas information takes 

longer to move outside friendship clusters on FB and popularity 

retains a better effectiveness. Note that in this setting, simple and 

relevant popularity are equivalent since all the generated ratings 

are positive as per the setting 𝑝(𝑟𝑎𝑡𝑒𝑑|𝑠𝑒𝑒𝑛, ¬𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡) = 0. 

Popularity gets a very slight advantage in observed precision on 

BA. We attribute this to an effect of a steeper positive rating distri-

bution with this graph, which results in the 10 topmost popular 

items accumulating a higher number of positive ratings, thereby 

yielding a higher observed 𝑃𝑜𝑏𝑠@10. 

 a)  Facebook network data b)  Barabási-Albert graph 

   
Figure 5. Positive rating, discovery and relevance distributions generated for different network structures: a) Facebook data (left) 

and b) a Barabási-Albert network with the same size in terms of number of nodes and arcs (right). The plots show the situation 

reached when the simulation has been run until 500,000 ratings are generated. The 𝒙 axis corresponds to the items, sorted by their 

number of positive ratings. Each dot shows the ratio of users who like (red), have discovered (green), and have rated positively (yel-

low) the corresponding item. We may observe a steeper green discovery front (viral effect) in the Barabási-Albert network. 
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4.5 Effectiveness disagreement 
The biases and effects we have analyzed can even cause a disagree-

ment between observed and true relevance not just in quantitative 

terms, but also in terms of the comparison of two recommenders, in 

this case popularity and random.  Figure 7 shows one such example 

on the FB graph. Simply with maximum “anti-relevance” communi-

cation bias 𝑝(𝑡𝑒𝑙𝑙|𝑠𝑒𝑒𝑛, 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡) = 0, 𝑝(𝑡𝑒𝑙𝑙|𝑠𝑒𝑒𝑛, ¬𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡) 

= 1, and neutral rating 𝑝(𝑟𝑎𝑡𝑒𝑑|𝑠𝑒𝑒𝑛, 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡) = 

𝑝(𝑟𝑎𝑡𝑒𝑑|𝑠𝑒𝑒𝑛, ¬𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡) = 1, we get a negative direct correla-

tion between positive ratings and relevance: the items with the most 

positive ratings are the ones with the least users liking them. As a 

consequence, the true precision of both simple and relevant populari-

ty is worse than random. Oblivious of the full true relevance, the 

observed precision of popularity is still higher than random (which is 

too low to be barely visible in the figure).  

5. CONCLUSION 
We have studied the effect of different aspects of user behavior in 

social networks on the effectiveness of popularity-based recommen-

dation. We define a formal model to represent such factors, based on 

which we can simulate different situations and observe the resulting 

effects. The analysis sheds findings such as a) popularity is most 

effective when users have a bias towards items they like when they 

share and rate items; b) highly active inter-user communication and 

viral information propagation pumps up observed precision –if 

communication is intense, even sharing non-liked items improves 

observed precision a bit further; c) viral propagation and a bias 

towards rating liked items can cause a decrease in true precision due 

to the exclusion of rated items from recommendations; d) viral prop-

agation of negative opinions can cause a disagreement between 

measured and true precision even in terms of system comparisons; e) 

network structure is an additional factor for the effectiveness of 

precision, as it determines to a significant extent the speed of infor-

mation transmission and discovery, thus intensifying or moderating 

the viral effects and their consequences on popularity.  

The possibilities for continuation of the presented work are manifold. 

We are currently aiming to back the reported empirical observations 

with a formal analysis of the explored model and effects. Beyond 

that, the simplifications assumed so far can be relaxed in many 

directions: we may consider different inter-user communication 

modalities (e.g. communicate with more than one friend per turn, 

etc.), introduce the distinction between user discovery and item 

consumption, non-uniform user behaviors, biases in extrinsic item 

discovery (e.g. relevance bias in user searches), discovery loop from 

recommendations, temporal dynamics (e.g. new items and users 

keep entering the system), further dependencies between events 

(such as user decisions and choices depending on discovery source), 

dynamic networks, non-static user preferences (including effects of 

social influence in preference formation and propagation), etc. A 

user study to check what trends are given in practice in specific 

social environments would also be highly relevant to our research. 

6. ACKNOWLEDGMENTS 
This work was supported by the national Spanish Government 

(grant nr. TIN2013-47090-C3-2). 

7. REFERENCES 
[1] Bakshy, E., Rosenn, I., Marlow, C., and Adamic, L. The Role of 

Social Networks in Information Diffusion. WWW 2012, Lyon, 

France, April 2012, 519-528. 

[2] Barabási, A.-L. and Albert, R. Emergence of scaling in random 

networks. Science 286(5439), October 1999, 509–512. 

[3] Blattner, M. and Medo, M. Recommendation Systems in the 

Scope of Opinion Formation: a Model. Decisions Workshop at 

RecSys 2012, Dublin, Ireland, September 2012, 32-39. 

[4] Celma, Ò. and Herrera, P. A new approach to evaluating novel 

recommendations. RecSys 2008, Lausane, Switzerland, October 

2008, 179-186. 

[5] Cremonesi, P., Koren, Y., and Turrin, R. Performance of recom-

mender algorithms on top-n recommendation tasks. RecSys 2010, 

Barcelona, Spain, September 2010, 39-46. 

[6] Doerr, B., Fouz, M., and Friedrich, T. Why rumors spread so 

quickly in social networks. Comm. ACM 55(6), Jan 2012, 70-75. 

[7] Herlocker, J. L., Konstan, J. A., Terveen, L. G., and Riedl, J. T. 

Evaluating collaborative filtering recommender systems. ACM 

Trans. Information Systems 22(1), January 2004, 5-53. 

[8] Marlin, B. M., Zemel, R. S., Roweis, S. T., and Slaney, M. Col-

laborative Filtering and the Missing at Random Assumption. UAI 

2007, Vancouver, Canada, July 2007, 267-275. 

[9] McAuley, J. J. and Leskovec, J. Learning to Discover Social 

Circles in Ego Networks. NIPS 2012, Lake Tahoe, NV, USA, 

December 2012, 548-556. 

[10] Myers, S. A., Zhu, C., and Leskovec, J. Information Diffusion 

and External Influence in Networks. KDD 2012, Beijing, China, 

August 2012, 33-41. 

[11] Pradel, B., Usunier, N., and Gallinari, P. Ranking with non-random 

missing ratings: influence of popularity and positivity on evaluation 

metrics. RecSys 2012, Dublin, September 2012, 147-154. 

[12] Steck, H. Training and testing of recommender systems on data 

missing not at random. KDD 2010, Washington, DC, USA, July 

2010, 713-722 

[13] Steck, H. Item popularity and Recommendation Accuracy. 

RecSys 2011, Chicago, IL, USA, October 2011, 125-132. 

[14] Steck, H. Evaluation of recommendations: rating-prediction and 

ranking. RecSys 2013, Hong Kong, October 2013, 213-220.

 
Figure 7. An example where observed and true precision disa-

gree in the comparison of two recommenders (popularity vari-

ants vs. random recommendation). 

 

0

0.05

0.1

0.15

0.2

0.25

Observed True

P
@
1
0

Simple popularity

Relevant popularity

Random
recommendation

 

Figure 6. The effect of graph structure on popularity precision. 

The observed and true precision of relevant popularity vs. 

random recommendation on Facebook data (left) and a prefer-

ential attachment graph model (right) can be compared. 
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